Some Applications of Multivariate Multilevel Models in the Context of ESM/EMA Studies

Wolfgang Viechtbauer Maastricht University, The Netherlands KU Leuven, Belgium http://www.wvbauer.com

Purpose

- multivariate models are for multiple outcomes
- some applications:
 - examine reliability (internal consistency) of multiple items measuring the same construct
 - estimate correlation between two outcomes (and how correlation differs across groups)
 - test whether a predictor has more/less influence on outcome 1 vs outcome 2

Reliability of ESM/EMA Data

- examine reliability (internal consistency) of multiple items measuring the same construct
- use measurement of mood (positive and negative affect) as an illustrate example

Illustrative Data

- simulated dataset for an ESM/EMA study
- 10 semi-random beeps in 90-min intervals between 7:30am and 10:30pm for 4 days
- n = 100 subjects (52 females, 48 males)
- 3 items for PA, 4 items for NA (1-7 scale)

Reliability of PA and NA

- cannot examine reliability by examining consistency of measurements over time
- but can examine consistency of multiple items measuring the same construct
- analysis approach: multilevel factor analysis

Steps

- 1. restructure data into 'very-long' format
 - 2. fit multivariate multilevel model

3. ...

4. PROFIT!

id	beep	pa1	pa2	раЗ	nal	
1	1	2	7	4	4	
1	2	1	6	4	6	
			Ļ			
	id	beep	item	itemnum	У	
	1	1	pa1	1	2	
	1	1	pa2	2	7	
	1	1	pa3	3	4	
	1	1	na1	4	4	
	1	2	pa1	1	1	
	1	2	pa2	2	6	
	1	2	pa3	3	4	
	1	2	na1	4	6	

Notes:

- item must be a factor/character variable (use factor() if needed)
- beep is a counter from 1 to the maximum number of possible beeps
- na.action = na.omit only needed if there are missings
- the control part is optional, but may be needed to get convergence
- model fitting can take some time

Example Data and Code

• example dataset and code on GitHub

https://github.com/wviechtb/multivariate_multilevel_models

Estimate Correlation

- estimate correlation between two outcomes (and how correlation differs across groups)
- some approach this by making one outcome the 'outcome' and the other the 'predictor' (with some kind of standardization)
- but BOTH variables are outcomes, so we should treat them as such

id	sex	beep	outcome	outnum	У
1	female	1	PA	1	4.33
1	female	1	NA	2	2.50
1	female	2	PA	1	3.67
1	female	2	NA	2	3.75
1	female	38	PA	1	3.67
1	female	38	NA	2	2.75
1	female	40	PA	1	2.67
1	female	40	NA	2	3.50

library(nlme)

summary(res)

Notes:

- outcome must be a factor/character variable (use factor() if needed)
- beep is a counter from 1 to the maximum number of possible beeps
 na.action = na.omit only needed if there are missings
- na.action = na.omit only needed if there are missings
 the control part is optional, but may be needed to get convergence
- model fitting can take some time

Inference (CIs/Testing)

- get CIs for variance/correlation components with intervals(res)
- can also compute CI by hand using the Fisher transformation (see <u>wikipedia</u>)
 - n for person level correlation: number of subjects
 - n for beep level correlation: total number of beeps (careful: this is # of rows in long format / 2)
 - not the same as intervals() but very close

Inference (CIs/Testing)

- to compare correlation across groups:
 - fit model within each group
 - then test correlations against each other using Fisher transformation
- testing for an association with a continuous predictor is tricky (need to use model that allows for predictors of variance/correlation components)

Differential Influence Predictors

- test whether a predictor has more/less influence on outcome 1 vs outcome 2
- inadequate (but often used) approach: fit out1 ~ pred and out2 ~ pred and see if one is significant and the other is not
- also cannot easily test coefficients against each due to dependence
- using multivariate multilevel model is better

id	sex	beep	outcome	outnum	У
1	female	1	PA	1	4.33
1	female	1	NA	2	2.50
1	female	2	PA	1	3.67
1	female	2	NA	2	3.75
1	female	38	PA	1	3.67
1	female	38	NA	2	2.75
1	female	40	PA	1	2.67
1	female	40	NA	2	3.50

Differential Influence Predictors

- fit model with outcome, predictor, and the outcome x predictor interaction
- test of interaction is test of differential influence
- this accounts properly for dependence

Reference

- useful references for these types of models:
 - Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York: Routledge.
 - Goldstein, H. (2011). Multilevel statistical models (4th ed.). Chichester, UK: Wiley.