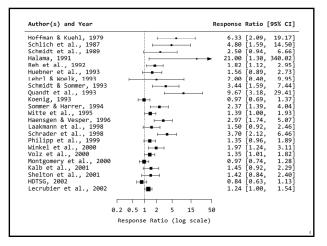

Alternative weighting schemes in the random-effects model to reduce the impact of publication bias

July 13th, 2016

Annual Meeting of the Society for Research Synthesis Methodology, Florence, Italy

Wolfgang Viechtbauer Maastricht University, The Netherlands https://www.wvbauer.com

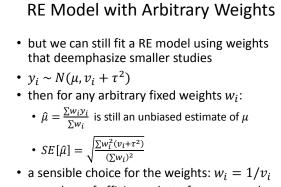


• 95% CI for
$$\mu: \hat{\mu} \pm 1.96 SE[\hat{\mu}]$$

Example: St. John's Wort for Depression

- based on Linde et al. (2005)
- 23* placebo-controlled trials that examined the clinical effects of *Hypericum* extract in adults with depression
- outcome measure: response ratio (RR)
- analysis with log-transformed RRs

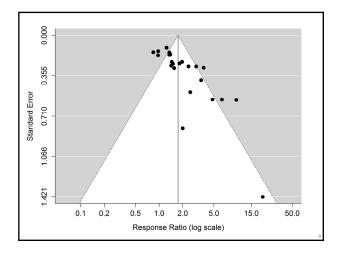
* one study with no events excluded



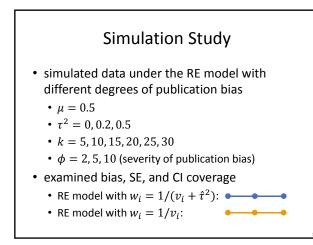
Example: St. John's Wort for Depression

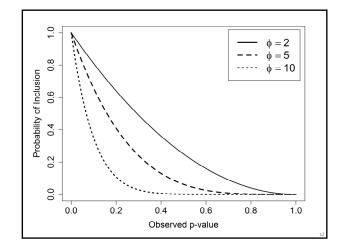
- standard RE model results:
 - $\hat{\tau}_{DL}^2 = 0.14 (I^2 = 73.9\%)$
 - Q(22) = 84.42, p < .0001
 - $\hat{\mu} = 0.56 \, (SE = 0.10)$
 - back-transformed: 1.75 (95% CI: 1.43 to 2.12)
 - 95% CR/PI: 0.81 to 3.74

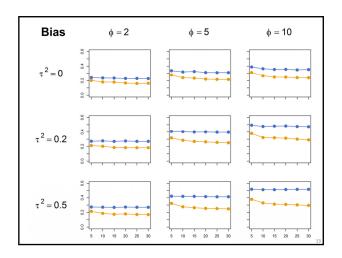
Critique of the RE Model

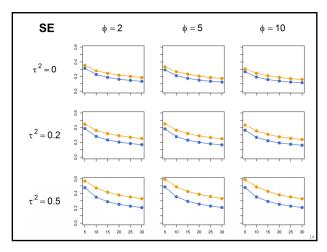

- as $\tau^2 \rightarrow \infty$, $\hat{\mu}$ approaches $\sum y_i/k$
- "so small studies are getting too much weight"
- under the RE model, $\hat{\mu}$ is the UMVUE of μ , so from that perspective, weights are 'correct'
- (actually, since τ^2 is estimated, $\hat{\mu}$ is only an approximation to the UMVUE)

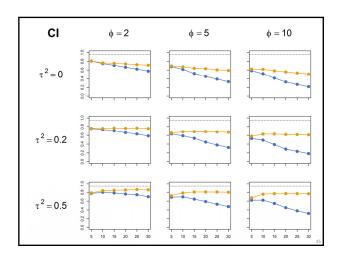
• some loss of efficiency, but often not much

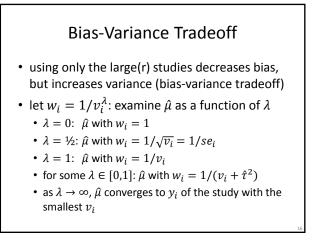

Example: St. John's Wort for Depression

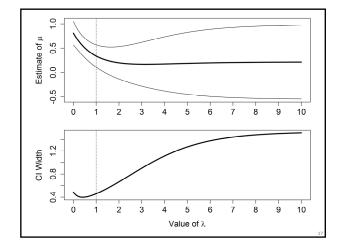

- standard RE model results:
 - $\hat{\tau}_{DL}^2 = 0.14 \, (I^2 = 73.9\%)$
 - $\hat{\mu} = 0.56 \, (SE = 0.10)$
 - back-transformed: 1.75 (95% CI: 1.43 to 2.12)
- RE model with $w_i = 1/v_i$ weights:
 - $\hat{\tau}_{DL}^2 = 0.14 \, (I^2 = 73.9\%)$
 - $\hat{\mu} = 0.34$ (SE = 0.12)
 - back-transformed: 1.40 (95% CI: 1.12 to 1.77)

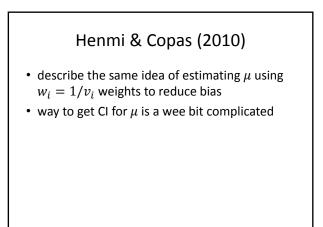



Publication Bias


- assume probability of inclusion in metaanalysis is an inverse function of the p-value
- then smaller studies will tend to be included only if they greatly overestimate the effect
- using the standard RE model weights will then lead to more bias
- using $1/v_i$ weights counteracts this

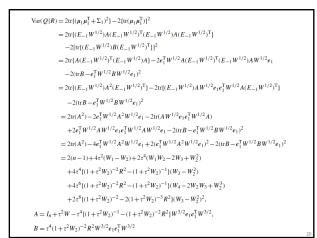


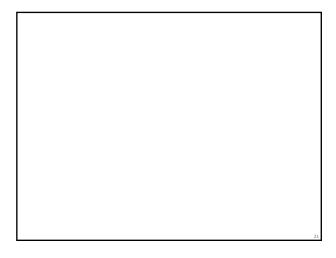




Henmi & Copas (2010)

The conditional distribution of Q given R [...] is a little complicated, but it is well approximated by the gamma distribution with mean


 $(n-1) + \tau^2 (W_1 - W_2) + \tau^4 \{ (1 + \tau^2 W_2)^{-2} R^2 - (1 + \tau^2 W_2)^{-1} \} (W_3 - W_2^2)$ and variance


$$2(n-1) + 4\tau^2(W_1 - W_2) + 2\tau^4(W_1W_2 - 2W_3 + W_2^2)$$

 $+4\tau^4\{(1+\tau^2W_2)^{-2}R^2-(1+\tau^2W_2)^{-1}\}(W_3-W_2^2)$

$$+4\tau^{6}\{(1+\tau^{2}W_{2})^{-2}R^{2}-(1+\tau^{2}W_{2})^{-1}\}(W_{4}-2W_{2}W_{3}+W_{2}^{3})$$

 $+2\tau^8\{(1+\tau^2W_2)^{-2}-2(1+\tau^2W_2)^{-3}R^2\}(W_3-W_2^2)^2.$

Henmi & Copas (2010)

• comparison:

Method	ĥ	$\exp(\widehat{\mu})$	95% CI
RE with $w_i = 1/(v_i + \hat{\tau}^2)$	0.56	1.75	1.43 to 2.12
RE with $w_i = 1/v_i$	0.34	1.40	1.12 to 1.77
Henmi & Copas (2010)	0.34	1.40	1.09 to 1.80

Estimation of τ^2

- τ^2 estimator also implies certain weights:
 - HE: $w_i = 1$
 - DL: $w_i = 1/v_i$
 - ML, REML, EB/PM: $w_i = 1/(v_i + \hat{\tau}^2)$
- general method-of-moments estimator (DerSimonian & Kacker, 2007):
 - HE and DL are special cases
 - can work with any weights

Conclusions

- fitting RE model with $w_i = 1/v_i$ (or other weights) is no problem
- can be used to avoid giving "undue" weight to small studies
- · decreases bias if there is publication bias

References

- DerSimonian, R., & Kacker, R. (2007). Random-effects model for meta-analysis of clinical trials: An update. *Contemporary Clinical Trials, 28(2), 105-114.*
- Henmi, M., & Copas, J. B. (2010). Confidence intervals for random effects meta-analysis and robustness to publication bias. *Statistics in Medicine*, *29*(*29*), *2969-2983*.
- Linde, K., Berner, M., Egger, M., & Mulrow, C. (2005). St John's wort for depression: Meta-analysis of randomised controlled trials. *British Journal of Psychiatry, 186, 99-107*.