last time we looked at some packages from the tidyverse
(https://www.tidyverse.org)
as noted above, magrittr
provides the tidyverse pipe
this can be combined with dplyr
for various data preparation/manipulation steps
library(tidyverse)
# create some toy data
set.seed(123)
<- data.frame(id = rep(1:4, each=5),
dat y = sample(5:10, 4*5, replace=TRUE))
dat
# get the mean of every subject the tidyverse way
%>%
dat group_by(id) %>%
summarise(meany = mean(y))
a lightweight alternative to dplyr
and magrittr
is provided by the poorman
package (https://cran.r-project.org/package=poorman)
# create some toy data
set.seed(123)
<- data.frame(id = rep(1:4, each=5),
dat y = sample(5:10, 4*5, replace=TRUE))
dat
# install and load the poorman package
#install.packages(poorman)
library(poorman)
# get the mean of every subject
%>%
dat group_by(id) %>%
summarise(meany = mean(y))
and in the future, should be able to combine this with R’s native pipe
|>
dat group_by(id) |>
summarise(meany = mean(y))