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Model Checking in Meta-Analysis

Wolfgang Viechtbauer

11.1 � Introduction

In previous chapters, methods have been described to compute and model various outcome 
or effect size measures, such as risk differences, (log transformed) risk/odds ratios, raw or 
standardized mean differences, and correlation coefficients. The observed values of such 
measures may reflect the size of a treatment effect, the degree to which a risk factor is related 
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Model Checking in Meta-Analysis

to the chances of being afflicted by (or the severity of) a particular disease, or more gener-
ally the size of group differences. Some measures, such as the correlation coefficient, simply 
reflect the degree to which two variables of interest are (linearly) related to each other.

The process of analyzing such data involves fitting one or more models to the observed 
outcomes,* based on which we can draw conclusions about the effectiveness of a treat-
ment, the relevance of a risk factor, the degree to which groups differ, the strength of the 
association between two variables, and so on. In addition, it is typically of interest to exam-
ine whether the phenomenon being studied (e.g., the treatment effect) is relatively homo-
geneous across studies or varies, possibly as a function of one or more variables that can 
account for this heterogeneity. However, the models used in such analyses make various 
assumptions. In practice, assumptions may be violated, which in turn may affect the statis-
tical properties of the inferential methods used to draw conclusions from the data at hand. 
It is therefore important to carefully consider to what extent the various assumptions may 
be violated and what impact this may have on the results and conclusions.

Similarly, when we fit a model to our data, we make the implicit assumption that the 
model represents an adequate approximation to some underlying data generating process. 
Naturally, reality is more complex than any model we can envision, but gross mismatch 
between the data and model should warn us that we are far from providing an adequate 
description of how the data may have arisen. Therefore, assessing model fit should be an 
essential step in any analysis. For some aspects of the models, this can be done by means 
of a statistical test. An examination of the residuals and standardized versions thereof can 
also provide clues about the presence of an incongruity between the data and the assumed 
model and/or may indicate that the model is not appropriate for certain data points.

Finally, it is important to examine whether one or more studies exert a disproportionally 
large influence on the conclusions of a meta-analysis. If we find that certain findings hinge 
on only one or two studies being present in our dataset, then this may call into question 
the robustness of the findings, in which case the corresponding conclusions should be 
framed more cautiously. An important tool in this context is to examine how the removal 
of studies from the dataset would alter the results. We will therefore consider a variety of 
diagnostic measures on the basis of this idea.

11.2 � Models Assuming Normal Sampling Distributions

In this section, some of the meta-analytic models introduced in previous chapters will be 
reviewed, with emphasis on the common-, random-, and (mixed-effects) meta-regression 
models. The models considered here are all based on the assumption that the observed 
outcomes represent draws from normal sampling distributions (models that assume other 
types of sampling distributions will be briefly discussed in Section 11.7). Moreover, the 
models are not tied to any particular outcome or effect size measure. Therefore, in general, 
let yi denote the observed value of the chosen outcome measure (e.g., log odds ratio) in the 
ith study and let θi denote the value of the corresponding (unknown) true outcome (e.g., 
the true log odds ratio).

*	 As described in Chapter 5, it is also possible to model the raw data directly where available (or where it can be 
reconstructed based on the available information) using appropriate generalized linear mixed-effects models. 
We will return to a discussion of such models at the end of this chapter.
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11.2.1 � Common-Effect Model

The first model we will consider is the common-effect model, which is given by

	 y ei i= ,q + 	 (11.1)

where θ denotes the underlying true value of the outcome measure and e N si i~ ( , )0 2 .  
Therefore, as the name implies, the model assumes that the true outcomes are equal 
(homogeneous) across studies (i.e., θi = θ for i k= 1, ,… ). Moreover, the sampling error in the 
ith study (i.e., ei) is assumed to be normally distributed with sampling variance equal to si

2,  
which in turn we consider to be a known and fixed quantity. Finally, assuming indepen-
dence between studies implies Cov[ , ] = 0e ei i¢  for i ≠ i′.

11.2.2 � Random-Effects Model

The common-effect model can be considered a special case of the more general random-
effects model, where potential heterogeneity in the true outcomes is accounted for by add-
ing a random effect for each study to the model. In particular, the random-effects model 
is given by

	 y u ei i i= ,m + + 	 (11.2)

where μ denotes the average true outcome and u Ni ~ ( , )0 2t  is a normally distributed 
random effect by which the true outcome in the ith study differs from the average true 
outcome (so that θi = μ + ui). Therefore, τ2 denotes the amount of variance (or “heterogene-
ity”) in the true outcomes (hence, if τ2 = 0, then the random-effects model simplifies to the 
common-effect model, so that μ ≡ θ). Assumptions about ei are as described previously, 
with the addition that we assume independence between different ui values (and hence, 
Cov[ , ] = 0u ui i¢  for i ≠ i′) and between ui and ei (which implies Cov[ , ] = 0u ei i ).

11.2.3 � Meta-Regression Model

An alternative approach to account for heterogeneity in the true outcomes is to explicitly 
model such differences by means of one or more predictor (or “moderator”) variables. This 
leads to the meta-regression model, which is given by

	 y x x ei i q iq i= ,0 1 1b b b+ + + +� 	 (11.3)

where β1 through βq are model coefficients that denote how the true outcome changes for a 
one-unit increase in the corresponding moderator variables xi1 through xiq and β0 denotes 
the model intercept, which corresponds to the true outcome when all moderator variables 
take on the value 0.

11.2.4 � Mixed-Effects Model

Finally, analogous to the random-effects model, the meta-regression model can also be 
extended by the addition of a random effect for each study. Doing so yields the mixed-
effects model (also called random-effects meta-regression model), which is given by

	 y x x u ei i q iq i i= ,0 1 1b b b+ + + + +� 	 (11.4)



222 ﻿﻿Handbook of Meta-Analysis

with ui ~ N(0,τ2) as before, except that τ2 should now be interpreted as the amount of vari-
ance in the true outcomes that is not accounted for by the moderator variables included in 
the model (hence, τ2 is often described as the amount of “residual heterogeneity”).

11.2.5 � Model Fitting

Methods for fitting the various models described above were discussed in earlier chapters 
but will be briefly restated here for completeness sake and to fix notation. We start with the 
mixed-effects model and then treat the remaining models as special cases thereof. Matrix 
notation is used, as it provides a compact way of writing out the equations. When it is help-
ful for understanding, algebraic expressions are also provided.

The mixed-effects model implies that y X V I~ +N( , )2bb t , where y is a k × 1 column vector 
with the observed outcomes y1 through yk, X is a k × (q + 1) matrix containing the values of 
the moderator variables (with the constant 1 in the first column for the model intercept), β 
is a (q + 1) × 1 column vector with the model coefficients b b b0 1, , ,… q, V is a diagonal matrix 
with the si

2 values along the diagonal, and I is a k × k identity matrix.
To fit the mixed-effects model, we must first estimate τ2 using one of the various estima-

tors that have been described in the literature for this purpose (e.g., Thompson and Sharp, 
1999; Viechtbauer et al., 2015) and that are reviewed in Chapter 4. For the purposes of this 
chapter, we will just consider a relatively simple method-of-moments estimator, which is 
given by

	 t̂ 2 ( 1)
trace[ ]

,=
Q k qE - - -

P
	 (11.5)

where QE = ¢y Py and P V V X X V X X V= ( )1 1 1 1 1- - - - -- ¢ ¢ . In case t̂ 2 is negative, the estimate is 
set to 0.

Once t̂ 2 has been calculated, estimates of the model coefficients in β can be obtained 
using the weighted least squares estimator

	 b̂b = ( ) ,1¢ ¢-X WX X Wy 	 (11.6)

where W V I= ( )+ -t̂ 2 1. The variance-covariance matrix of b̂b  can be estimated with

	 Var[ ] ( ) .1b̂b = ¢ -X WX 	 (11.7)

Taking the square root of the diagonal elements of Var[ ]b̂b  then yields standard errors of 
the model coefficients (i.e., SE SE q[ ], , [ ]0

ˆ ˆb b… ). Note that (11.7) ignores the uncertainty in the 
estimate of τ2, which is discussed in more detail in Chapter 4.

By comparing the test statistic z SEj j j= ˆ ˆb b/ [ ] against appropriate percentiles of a stan-
dard normal distribution (e.g., ±1.96 for a two-sided test at α = 0.05), we can test H0: βj = 0, 
that is, whether there is a significant relationship between a moderator variable and the 
outcomes. Analogously, an approximate 95% confidence interval (CI) for βj can be con-
structed with ˆ ˆb bj jSE± 1.96 [ ]. Simultaneous tests of multiple coefficients can also be con-
ducted by computing

	 QM = ˆ ˆ ˆ¢ -bb bb bb[2] [2]
1

[2](Var[ ] ) ,	 (11.8)
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where b̂b[2] is a column vector containing the m coefficients to be tested and Var[ ][2]b̂b  denotes 
an m × m matrix with the corresponding rows and columns from (11.7). Under the null 
hypothesis that the true values of the coefficients tested are all equal to zero, QM follows 
(approximately) a chi-square distribution with m degrees of freedom. A common applica-
tion of (11.8) is to test all coefficients excluding the intercept (i.e., H q0 1 = = = 0: b b� ), which 
(analogous to the omnibus F-test in multiple regression) can be used to examine whether 
at least one of the moderator variables included in the model is related to the outcomes, or 
put differently, whether the set of moderators included in the model actually accounts for 
any heterogeneity in the true outcomes.

The fitted values based on the model can be computed with ˆ ˆy X= bb  or equivalently with 
ŷ Hy= , where

	 H X X WX X W= ( ) 1¢ ¢- 	 (11.9)

is the hat matrix, whose relevance will be discussed in more detail further below. Similarly, 
for any row vector xi (with xi not necessarily a row from X), we can compute the corre-
sponding predicted value with ˆ ˆmi i= x bb , with variance equal to Var[ ] Var[ ]ˆ ˆmi i i= x xbb ¢  and 
standard error SE i i[ ] Var[ ]ˆ ˆm m= . Therefore, an approximate 95% CI for the expected true 

outcome given vector xi can be computed with ˆ ˆm mi iSE± 1.96 [ ]. Note that in the mixed-
effects model, m̂i  denotes the predicted average outcome for a particular combination of 
moderator values. The true outcome for a particular study can still differ from m̂i  due to 
residual heterogeneity.

The other three models can be considered to be special cases of the mixed-effects model. 
First, fixing τ2 = 0 yields the meta-regression model. The model coefficients and correspond-
ing variance-covariance matrix are then estimated with (11.6) and (11.7) with W = V−1. All 
other equations work accordingly, although notationally, it is now more appropriate to 
denote a predicted value with q̂i (i.e., in the absence of residual heterogeneity, there is no 
longer a distinction between the predicted average outcome and the predicted outcome 
for a single study).

Second, the random-effects model results when X is only a column vector with the con-
stant 1, in which case ˆ ˆb m0 /º å å= w y wi i i  with corresponding standard error 

SE wi[ ] 1/m̂ = å , where w si i= 1/( )2 2+t̂ . Note that (11.5) then simplifies to the well-known 

DerSimonian–Laird estimator of τ2 in the random-effects model (DerSimonian and Laird, 
1986).

Finally, when fixing τ2 = 0 and X is only a column vector with the constant 1, then we 
obtain the common-effect model, where ˆ ˆb q0 /º å å= w y wi i i  with corresponding stan-

dard error SE wi[ ] 1/q̂ = å  as before, but now with w si i= 1/ 2.

An additional statistic that is often reported is the I2 statistic (Higgins and Thompson, 
2002). It is given by

	 I
s

2
2

2 2100 ,= %´
+

æ

è
ç

ö

ø
÷

ˆ
ˆ

t
t �

	 (11.10)
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where t̂ 2 is the estimate of τ2 from the random-effects model and

	 �s k

w w wi i i

2
2

=
1

/

-

-å å å
	 (11.11)

is a way of quantifying the “typical” sampling variance across the k studies, which is 
computed with w si i= 1/ 2. The Ι2 statistic estimates what percentage of the total variability 
(which is composed of heterogeneity plus sampling variability) can be attributed to het-
erogeneity among the true outcomes. Also, for the mixed-effects model, a pseudo R2-type 
measure can be computed with

	 R RE ME

RE

2
2 2

2100 ,= %´ -æ

è
ç

ö

ø
÷

ˆ ˆ
ˆ

t t
t

	 (11.12)

where t̂ RE
2  and t̂ ME

2  are the estimates of τ2 in the random- and mixed-effects models, 
respectively (López-López et al., 2014; Raudenbush, 2009). The R2 statistic estimates the 
proportional reduction in the amount of heterogeneity when including moderators in a 
random-effects model, or put differently, what percentage of the total heterogeneity can 
be accounted for by the moderators included in the mixed-effects meta-regression model.

11.3 � Example Dataset

For didactic purposes, a meta-analytic dataset was constructed that will be used to illus-
trate the application of the aforementioned models and the methods to be discussed in 
more detail below. The dataset, given in Table 11.1, can be thought of as a set of k = 20 
randomized controlled trials (e.g., patients receiving a medication versus a placebo) where 
a dichotomous response variable of interest was measured within the individual studies 
(e.g., remission versus persistence of symptoms). Columns ni

T  and ni
C  denote the total num-

ber of patients in the treatment and control group, respectively, while columns xi
T  and xi

C  
denote the number of patients within the respective groups that experienced the outcome 
of interest (e.g., remission). The outcome measure to be used for the meta-analysis will be 
the log odds ratio.

The observed log odds ratios can be computed with

	 y
x m
x m

i
i
T

i
T

i
C

i
C=

( 0.5)/( 0.5)
( 0.5)/( 0.5)

,ln
+ +
+ +

é

ë
ê

ù

û
ú 	 (11.13)

where m n xi
T

i
T

i
T= -  and m n xi

C
i
C

i
C= - , and are given in the corresponding column in the 

table. A positive value for yi therefore indicates higher odds of remission in the treatment 
compared with the control group. The sampling variances of the log odds ratios, given in 
the adjacent column, were computed with

	 s
x m x m

i
i
T

i
T

i
C

i
C
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The 0.5 term in the equations above serves two purposes. First, it reduces the bias in yi as 
an estimate of θi, the true log odds ratio in the ith study (Walter, 1985; Walter and Cook, 
1991). A second, more practical reason for the addition of the 0.5 term is that it allows 
the computation of the log odds ratio (and its corresponding sampling variance) even in 
studies where one of the 2 × 2 table cells (i.e., xi

T , mi
T , xi

C , mi
C) is equal to zero (although not 

applicable here, this issue will become relevant further below).
The last column in Table 11.1 reflects the dosage of the medication provided to patients 

in the treatment group (e.g., in milligrams per day), which we can envision as a potentially 
relevant moderator variable in this context. We will examine this moderator further with 
(mixed-effects) meta-regression models. In addition, common- and random-effects models 
were fitted to the data. Results for the various models are given in Table 11.2.

Under the assumption that the true outcomes are homogeneous, the common-effect 
model yields an estimate of the true log odds ratio equal to q̂ = 0.529 (95% CI: 0.415 to 
0.644). Since the estimate is positive and the CI excludes the value 0, this suggests that 
the treatment significantly increases the odds of remission. Similarly, the random-effects 
model yields an estimate of m̂ = 0.587  (95% CI: 0.302 to 0.871), but the value should now be 
interpreted as the estimated average true effect of the treatment. In fact, we estimate that 
I2 = 81.70% of the total variability can be attributed to heterogeneity, so it seems implausible 
that the true outcomes are homogeneous.

We can try to explain some of the heterogeneity with the dosage moderator. The meta-
regression model suggests a significant relationship between dosage and the treatment 
effect, with the true log odds ratio increasing by b̂1 0.008=  points for each additional 

TABLE 11.1

Illustrative Data for a Meta-Analysis of 20 Trials

Study ni
T ni

C xi
T xi

C yi si
2 Dose

1 66 59 42 24 0.922 0.133 100
2 59 65 42 34 0.796 0.141 200
3 253 257 96 32 1.447 0.052 250
4 137 144 51 44 0.296 0.063 125
5 327 326 47 39 0.209 0.053 50
6 584 588 38 87 −0.907 0.041 25
7 526 532 390 323 0.617 0.018 125
8 28 30 10 3 1.495 0.471 125
9 191 201 165 126 1.316 0.065 125
10 86 94 58 39 1.059 0.096 150
11 229 221 72 60 0.206 0.043 100
12 153 144 79 56 0.514 0.055 150
13 93 95 48 35 0.597 0.087 200
14 40 40 8 4 0.752 0.398 25
15 85 88 44 21 1.214 0.108 175
16 100 107 10 13 −0.208 0.191 25
17 72 64 11 9 0.088 0.226 25
18 80 74 47 23 1.134 0.113 200
19 191 195 144 116 0.730 0.049 100
20 85 85 48 49 −0.047 0.095 75
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milligram (z1 = 7.96, so we can reject H0: β1 = 0). The mixed-effects model leads to a similar 
conclusion, except that b̂1 0.007=  now reflects how the average true effect changes as a 
function of the treatment dosage (with z1 = 4.76, the relationship is still significant). Both 
the random- and mixed-effects models indicate the presence of (residual) heterogene-
ity, although the dosage moderator appears to account for a substantial amount thereof. 
The pseudo R2 statistic indicates that about 100% (0.317 0.090)/0.317 = 72%´ -  of the total 
amount of heterogeneity is accounted for by the dosage moderator alone.

Results for the models are also illustrated graphically in Figure 11.1. The left-hand side 
of the figure shows a forest plot of the observed outcomes for the individual studies (with 
approximate 95% CI bounds for θi given by yi ±1.96si) and the results from the common-
effect (CE) and random-effects (RE) models indicated at the bottom of the figure in terms 
of polygon shapes (with the center corresponding to the estimate and the ends correspond-
ing to the 95% CI bounds). The right-hand side of Figure 11.1 shows a scatterplot of the 
dosage moderator on the x-axis versus the observed outcomes on the y-axis with the area 
of the points drawn proportional to the inverse sampling variances (i.e., 1/ 2si ).

11.4 � Checking Model Assumptions

The models described in Section 11.2 could be considered the main “workhorses” in meta-
analytic applications. However, the models make various assumptions, which may be 
violated in practice. One of the crucial assumptions concerns the form of the sampling 
distribution of the chosen effect size or outcome measure. In particular, all of the models 
assume that y N si i i i| ( , )2q q~ , that is, conditional on θi, each observed outcome yi is assumed 
to be drawn from a sampling distribution that is normal with expected value θi and vari-
ance si

2, with si
2 assumed to be a known and fixed quantity. We will now examine these 

assumptions in more detail and consider their plausibility.

11.4.1 � Normal Sampling Distributions

Let us first examine the normality assumption in more detail. To begin with, it is impor-
tant to emphasize that this assumption does not pertain to the collection of observed 

TABLE 11.2

Results for the Common-Effect, Random-Effects, Meta-Regression, and Mixed-Effects Models 
When Applied to the Data in Table 11.1 (Standard Error of the Estimates Are Given in Parentheses)

Common-effect model Random-effects model Meta-regression model Mixed-effects model

q̂ = 0.529

(0.0586)

m̂ = 0.587

(0.1451)
b̂0 0.423= -

(0.1333)

b̂0 0.304= -

(0.2061)
z = 9.03 z = 4.04 z0 = −3.18 z0 = −1.48

b̂1 0.008=

(0.0010)

b̂1 0.007=

(0.0015)
z1 = 7.96 z1 = 4.76

t̂ 2 0.317= t̂ 2 0.090=
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outcomes included in a meta-analysis (i.e., we do not assume that the observed yi values 
themselves are normally distributed), but the theoretical distribution that would arise if a 
certain study were to be repeated a large number of times under identical circumstances. 
We shall construct this distribution now for one of the studies included in the illustrative 
dataset, again focusing on the log odds ratio as the chosen outcome measure.

Consider study 14, which included n ni
T

i
C= = 40 patients in each group. Now, in order to 

construct the sampling distribution of the log odds ratio for this study, we would have to 
know p i

T  and p i
C , the true probabilities of remission for patients in the treatment and con-

trol group, respectively. Obviously, these values are unknown to us, but we can use the 
observed proportions from this study (i.e., x ni

T
i
T/  and x ni

C
i
C/ ) as an indication of the true 

probabilities and, for illustration purposes, simply assume that p i
T = .20 and p i

C = .10. 
Therefore, the true log odds ratio for this study would be equal to 
qi = (.20/(1 .20))/(.10/(1 .10)) = 0.811ln - -[ ] . By taking random draws from the binomial 

distributions B ni
T

i
T( = 40, = .20)p  and B ni

C
i
C( = 40, = .10)p , we can then easily generate val-

ues for xi
T  and xi

C , which we can use to calculate the log odds ratio as given by (11.13). By 
repeating this process a large number of times under identical circumstances (i.e., keeping 
ni

T , ni
C , p i

T , and p i
C  the same), we can generate the sampling distribution of the log odds 

ratio under the described scenario. Use of the 0.5 adjustment term as described earlier 
guarantees that we can compute the log odds ratio in every iteration of such a simulation.

Figure 11.2 shows the shape of the distribution generated in this manner (after 107 itera-
tions) in terms of a histogram and a normal quantile-quantile (Q-Q) plot. The solid line 

FIGURE 11.1
Forest plot showing the results of the CE and RE models and a scatterplot of the dosage moderator against 
the log odds ratios for the illustrative data in Table 11.1. The solid line in the scatterplot corresponds to the 

regression line (with intercept b̂0  and slope b̂1) for the mixed-effects model, with the dashed lines indicating 
(pointwise) 95% CIs around the predicted values. For reasons to be discussed further, the dotted line shows the 
regression line from the mixed-effects model when omitting study 6 from the dataset.
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superimposed on the histogram corresponds to a normal distribution with mean and 
standard deviation equal to that of the simulated log odds ratios, while the dotted line 
represents a kernel density estimate of the underlying distribution. The log odds ratios 
ranged from −3.570 to 4.394 with a mean of 0.812 (SD = 0.687). Therefore, under the simu-
lated conditions, (11.13) provides an essentially unbiased estimate of θi = 0.811. However, 
the shape of the sampling distribution deviates slightly from that of a normal distribution, 
especially in the tails. Although the departure from normality may be negligible in this 
case, the example does illustrate that we cannot assume that the normality assumption is 
automatically fulfilled.

In fact, the normality assumption is only approximately true for most of the commonly 
used outcome measures that are applied in the meta-analytic context. Certainly, for mea-
sures that are bounded (e.g., the raw correlation coefficient or the risk difference), the 
assumption cannot be true in general, but it may still hold as a rough approximation. At 
the same time, for unbounded measures (such as the log odds ratio or the standardized 
mean difference), it may be quite inaccurate under certain circumstances. In particular, 
when sample sizes within studies are small and/or when the underlying parameters are 
very large or small (e.g., p i

T  and p i
C  are close to 0 or 1 for measures such as the log odds/

risk ratio or the true standardized mean difference is far from 0), the assumption can break 
down altogether. Also, due to the discrete nature of the counts on which they are based, 
measures such as the log odds ratio can only generate a finite number of unique values. 
For example, in the simulation above, only 310 unique values of the log odds ratio were 
observed across the 107 iterations.* Strictly speaking, the sampling distribution cannot be 
normal then, but we can still consider the values to be discretized observations from an 
underlying normal distribution.

*	 Technically, 412 = 1681 combinations of xi
T  and xi

C  are possible, although some of them (e.g., those where 
x xi

T
i
C= ) lead to the same value of yi. Simple enumeration of all possibilities shows that there are only 1083 

unique values of yi that could be observed, but many of them are so unlikely to happen that they do not occur 
even once across such a large number of iterations.

FIGURE 11.2

Histogram and normal Q-Q plot of the sampling distribution of the log odds ratio for a study with n ni
T

i
C= = 40 

patients in the treatment and control group and true probabilities of p i
T = .20 and p i

C = .10, respectively.
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11.4.2 � Unbiased Estimates

The second assumption implied by the models is that yi is an unbiased estimate of θi. In 
the simulation above, the log odds ratio computed with (11.13) was found to be essen-
tially unbiased in the given scenario. Moreover, prior work has shown that (11.13) yields 
an approximately unbiased estimator across a wide range of conditions (e.g., Walter, 1985; 
Walter and Cook, 1991). Interestingly, this work also indicates that the 0.5 adjustment used 
in the equation should always be applied, not just in studies where the presence of a zero 
cell in the 2 × 2 table would necessitate its use.

Similarly, the bias in estimators for other outcome measures has also been examined, 
leading to known bias corrections for the standardized mean difference (Hedges, 1981), 
the raw correlation coefficient (Olkin and Pratt, 1958), and Fisher’s r-to-z transformed cor-
relation coefficient (Hotelling, 1953). On the other hand, the risk difference and the raw 
mean difference are unbiased by construction. Generally, for estimators that are biased, 
the amount of bias usually diminishes quickly as the within-study sample size increases.

11.4.3 � Known Sampling Variances

Next, we will consider the assumption that the sampling variances of the observed out-
comes are known and fixed quantities. This assumption is often not exactly true for two 
reasons. First, for many outcome measures, commonly used equations to compute the 
sampling variances are based on derivations that describe the asymptotic (i.e., large-sam-
ple) properties of the outcome measures. Hence, in finite samples, the equations may not 
be accurate. Second, the equations often depend on unknown parameters. To compute the 
sampling variances, these unknown parameters must be replaced by corresponding esti-
mates, which introduces error into the values.

Consider again the log odds ratio. The asymptotic sampling variance of yi can be shown 
to be equal to
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where p i
T  and p i

C  are the true probabilities of the event of interest occurring in the treat-
ment and control group, respectively. Note that this equation is technically only correct 
when ni

T  and ni
C  are sufficiently large, which raises the question how large the groups need 

to be for the equation to be accurate. Moreover, since p i
T  and p i

C  are unknown parameters, 
the observed probabilities p x ni

T
i
T

i
T= /  and p x ni

C
i
C

i
C= /  are typically substituted, leading to 

equation (11.14) (with the addition of the 0.5 term to make the computation of si
2 possible 

under all circumstances). The resulting si
2 values are therefore not truly fixed and known 

quantities but are estimates themselves.
We can illustrate this again using the simulated data from the previous section. Given 

the assumed values of p i
T = 0.20 and p i

C = 0.10, we can compute the (large-sample) vari-

ance with (11.15), which is equal to si
2 =0.434¥  in this case. However, taking the variance of 

the simulated yi values yields Var[yi] = 0.472, which we can consider to be the true sampling 
variance of the log odds ratio under the given scenario (the simulation error is negligible 
due to the very large number of values generated). Therefore, the actual sampling variance 
is about 9% larger than what we obtain with (11.15), so some inaccuracy is introduced by 
basing our computations on an equation that describes the large-sample properties of the 
log odds ratio.
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However, neither of these two values would be available in practice. Instead, one would 
compute the sampling variance with (11.14) by plugging in the xi

T  and xi
C  values observed 

in a given sample. As a result, the calculated si
2 value may under- or overestimate the 

true sampling variance, sometimes to a considerable degree. The simulation above allows 
us to explore the range of values one could obtain under the stated scenario. Across all 
iterations, the si

2 values ranged from 0.210 to 4.049, although very large values were rare, 
as can be seen in the histogram of the observed si

2 values in Figure 11.3. Values above 2.5 
were only seen in 316 out of the 107 iterations (and hence, the x-axis in the histogram was 
restricted to a range of 0 to 2.5) and usually fell below 1 in 98% of the cases. However, 
even then, the observed si

2 value could still provide a rather inaccurate estimate of the true 
sampling variance (i.e., 0.472 as noted above). At least somewhat reassuring is the finding 
that the average of the observed values was 0.482, so (11.14) provides an approximately 
unbiased estimate of the true sampling variance in this scenario.

Interestingly, if we plot the observed log odds ratios against the estimated sampling 
variances, a peculiar pattern emerges as can be seen in the right-hand side of Figure 11.3 
(the vertical and horizontal lines indicate the true log odds ratio and true sampling vari-
ance, respectively). The plot illustrates the discrete nature of possible values that can actu-
ally arise (and therefore, the size of the points was drawn proportional to the number of 
observed values for a particular á ñy si i, 2  combination). Clearly, the two sets of values are 
related to each other (in this example, the correlation between the yi and si

2 values is 0.57), a 
fact that has been noted before (Berkey et al., 1995; Rücker et al., 2008). In summary then, it 
seems inappropriate to assume that the sampling variances of the observed outcomes are 
really fixed and known quantities, a point that has been emphasized in Chapter 5.

In general, the problem that the sampling variances are inaccurately estimated (and 
hence, falsely treated as fixed and known quantities) tends to become more severe in 
smaller samples and when the underlying parameters are very large or small. The same 
issue applies, to a larger or lesser extent, to many other outcome measures used in meta-
analysis, such as the risk difference, the log risk ratio, the raw and the standardized mean 
difference, and the raw correlation coefficient. An exception to this are measures based on 
a variance stabilizing transformation, most notably Fisher’s r-to-z transformed correlation 

FIGURE 11.3

Distribution of the observed sampling variances of the log odds ratio for a study with n ni
T

i
C= = 40 patients in 

the treatment and control group and true probabilities of p i
T = .20 and p i

C = .10, respectively.
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coefficient (Fisher, 1921) and the arcsine (and square root) transformed risk difference 
(Rücker et al., 2009), although even here we need to be precise: The variance stabilizing 
transformation eliminates the unknown parameters from the equation used to compute the 
sampling variance, but the resulting equation is still in principle a large-sample approxi-
mation. However, for both the r-to-z correlation coefficient and the arcsine transformed 
risk difference, the approximation is surprisingly accurate even for relatively small studies.

11.4.4 � Uncorrelated Errors and Random Effects

One additional assumption pertains to the random- and mixed-effects models. Recall that 
these models contain two random effects, namely ui, which represents a deviation of the 
study-specific true outcome from the average true outcome of all studies (or from the aver-
age true outcome for those studies that share a particular combination of moderator vari-
ables) and ei, the sampling error that represents a deviation of the observed outcome from 
the study-specific true outcome. The models assume that ui and ei are independent.

Once again, we will examine whether this assumption is appropriate for the log odds 
ratio by means of a simulation study. Here, we proceed as follows. As before, assume we 
are dealing with a study with n ni

T
i
C= = 40 patients in each group and that p i

C = .10. For 
a given true log odds ratio, θi, we can compute the implied value of the treatment group 
probability with p p q p p qi

T
i
C

i i
C

i
C

i= ( )/(1 ( ))exp exp- + . For example, for θi = 0.811, this yields 
p i

T = .20 as expected. However, instead of fixing θi, we now let θi follow a normal distribu-
tion, as assumed by the random-effects model. Specifically, we draw ui from N(0,τ2 = .20) 
and then compute θi=μ + ui with μ=0.811. Next, we compute p i

T  and then draw xi
T  and xi

C  
values from the respective binomial distributions. Finally, we can compute yi as described 
earlier and then ei = yi − θi yields the sampling error for one iteration.

Repeating this process 106 times yields pairs of á ñu ei i,  values, whose bivariate distribution 
we can now examine, for example, by means of the scatterplot shown on the left-hand side of 
Figure 11.4 (due to the large number of points drawn, alpha blending* was used to make differ-

*	 In alpha blending, each point is drawn with a certain degree of transparency. Multiple points drawn on top 
of each other then blend together to create increasing darker shades of the plotting color. As a result, the color 
intensity indicates the density of points within a particular region of the plot.

FIGURE 11.4
Scatterplot and 2D kernel density estimate of the bivariate distribution of ui and ei.
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ences in the density of the distribution more apparent). The right-hand side shows a 2D kernel 
density estimate of the bivariate distribution. The patterns in the scatterplot are again a result 
of the discrete nature of the distribution of yi values that can arise. However, the kernel density 
estimate suggests a unimodal, roughly symmetric distribution with no apparent relationship 
between the ui and ei values (the correlation is zero to three decimals). Although this does not 
demonstrate independence (zero correlation only implies independence if á ñu ei i,  would follow 
a bivariate normal distribution), it does provide some support for the independence assump-
tion in this scenario.

To what extent the independence assumption holds in other scenarios, and more gener-
ally, for other outcome measures besides the log odds ratio, has not been examined in detail 
in the literature. For the raw mean difference, ui and ei are independent by construction. 
On the other hand, for measures where the shape of the sampling distribution depends 
on the size of the underlying parameter estimated (e.g., the raw correlation coefficient), it 
is easy to reason that ui and ei will not form a bivariate normal distribution with zero cor-
relation, especially in small samples. However, further research is needed to determine if 
or to what degree ui and ei are dependent in such cases.

11.4.5 � Implications and Some General Remarks

The log odds ratio was given particular attention in this section, since this was the out-
come measure of choice in the example meta-analysis. However, analogous considerations 
apply to other outcome measures for dichotomous response variables (e.g., the log risk 
ratio and the risk difference), outcome measures for continuous response variables (e.g., 
the raw mean difference and the standardized mean difference), and outcome measures 
used to quantify the relationship between variables (e.g., the raw or Fisher’s r-to-z trans-
formed correlation coefficient).

In fact, a careful examination shows that there is not a single outcome measure used in 
meta-analysis that fulfills all of the assumptions described above exactly. Most of them 
actually fulfill very few of them! The raw mean difference could be argued to comes 
closest by construction, having an exactly normal sampling distribution, being unbi-
ased, with uncorrelated errors and random effects, although its sampling variance must 
still be estimated using sample quantities. The risk difference is also unbiased and when 
appropriate bias corrections are applied, the same holds for the standardized mean dif-
ference (Hedges, 1981), the raw correlation coefficient (Olkin and Pratt, 1958), and Fisher’s 
r-to-z correlation coefficient (Hotelling, 1953). Approximate unbiasedness can also be 
demonstrated by means of simulation studies for some of the other measures (possibly 
requiring some adjustments to the way the measure is typically computed), although 
this cannot hold at the same level of generality as when a measure can be shown to 
be unbiased with an analytic proof. Similarly, although no other measure besides the 
raw mean difference has an exactly normal sampling distribution, simulation studies 
can be used to examine to what extent and under what circumstances this assumption 
is at least approximately fulfilled for other measures. Finally, while it is demonstrably 
false to assume known sampling variances for any of the measures, those that involve a 
variance stabilizing transformation at least fulfill this assumption approximately under 
most circumstances.

At the same time, it can be shown for essentially all measures that the underlying esti-
mators are consistent, asymptotically unbiased, and that their sampling distribution 
approaches the shape of a normal distribution as the within-study sample size increases 
(note that for measures that reflect a contrast between two independent samples—such as 
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the log odds ratio or the standardized mean difference—this requires that both ni
T  and ni

C  
increase with similar rates).

The discussion above then raises two important questions. First, under what circum-
stances do the assumptions break down to such an extent that we should no longer apply 
these methods and models? And second, what are the consequences when one or more of 
the assumptions are violated? Unfortunately, there are no simple answers to these ques-
tions, because the answers depend on various factors, including the outcome measure 
under consideration, the size of the studies, and whether underlying parameters may be 
extreme in some sense and/or close to their natural bounds. However, for all measures, 
there are circumstances where serious concerns should be raised about their use, whether 
due to bias, non-normality, or other violations. As a result, point estimates may not be 
trustworthy and/or tests and CIs may not have their nominal properties (i.e., the actual 
type I error rate of hypothesis tests and the actual coverage of CIs may deviate from the 
chosen significance/confidence level).

There is a large amount of literature that has examined the statistical properties of the 
methods and models described above for a wide variety of outcome measures and condi-
tions (e.g., Berkey et al., 1995; Field, 2001; Friedrich et al., 2008; Hauck et al., 1982; Hedges, 
1982a, 1982b, 1982c; Sánchez-Meca and Marín-Martínez, 2001 just to give a small selection). 
While it would require many more pages to discuss the details, the general conclusion is 
that for many of the measures, the methods perform adequately, even when the assump-
tions discussed above are not exactly fulfilled. However, this should not be taken as an a 
priori truth. Moreover, most studies have examined the properties of the methods under 
circumstances where the assumptions underlying the construction of the outcome mea-
sures are exactly fulfilled (e.g., for the standardized mean difference, the data within the 
two groups was simulated from normal distributions). More work is still needed to exam-
ine the robustness of the methods when such underlying assumptions are also violated.

11.5 � Checking Model Fit

The assumptions discussed in the previous section relate to the statistical properties of the 
outcome measure chosen for the meta-analysis and should be carefully considered before 
we even start fitting models of the type described in Section 11.2. Once we are satisfied 
that these assumptions are (at least approximately) fulfilled, the actual analysis can then 
proceed by fitting one or more models to the data at hand.

It is important to emphasize that a statistical model in essence represents an assumption 
about the underlying data generating process. For example, when we fit the common-effect 
model to the data from the illustrative example, we implicitly assume that the data within 
the individual studies arose in such a way that the true treatment effect (as measured in 
terms of the log odds ratio) is constant across the trials, irrespective of any differences 
in the way the studies were designed, conducted, how the treatment was implemented/
administered, how the dependent variable was measured, or any relevant patient char-
acteristics. This is unlikely to be exactly true but may hold as a rough approximation in 
some applications (e.g., when a series of trials is conducted using identical methods in very 
similar patient populations).

Similarly, if we reject the assumption that the true outcomes are homogeneous across 
trials and decide to fit a meta-regression model with medication dose as a moderator, 
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we implicitly assume that any differences in treatment effectiveness across trials can be 
accounted for with this single explanatory variable. Again, this is likely to be a great over-
simplification of a much more complex reality, but it may serve as an adequate approxima-
tion. To check whether these assumptions are actually appropriate, we can apply tests for 
model misspecification, which are covered next.

11.5.1 � Testing for Model Misspecification

The homogeneity assumption underlying the common-effect model can be tested by 
means of the Q-test. Under the assumptions of the model, the test statistic

	 Q w yi i= ( )2å -q̂ 	 (11.16)

follows a chi-square distribution with k − 1 degrees of freedom, where w si i= 1/ 2 and q̂  is 
the estimate of θ under the common-effect model. However, when the observed outcomes 
fluctuate more around q̂  than expected based on their sampling variances alone (which 
should be the only source of variance affecting the yi values under the common-effect 
model), the Q-statistic increases. Therefore, a large Q-statistic should lead us to question 
the correctness of the assumed model.

Similarly, the meta-regression model (11.3) assumes that all of the heterogeneity in the 
true outcomes can be accounted for with the moderator variables included in the model, 
or analogously, that the model θi = xiβ is correctly specified. Again, this assumption can 
be tested, using a generalization of the Q-test to the meta-regression model. Here, the test 
statistic is computed with

	 Q w yE i i i= ( ) ,2å -q̂ 	 (11.17)

where ˆ ˆqi i= x bb  is the fitted value for the ith study from the meta-regression model (see 
Section 11.2.5) and w si i= 1/ 2 as before (note that this is the same QE statistic that is also 
involved in the estimator for τ2 given by equation 11.5). If the assumed meta-regression 
model correctly describes the underlying data generating process, then the QE statistic 
follows a chi-square distribution with k − q − 1 degrees of freedom. Again, as the degree of 
mismatch between the observed outcomes and the fitted values under the assumed model 
increases (i.e., more so than would be expected based on sampling variability alone), the 
QE statistic grows larger.

Although not frequently described in this manner, we can therefore consider (11.16) and 
(11.17) to be tests of model misspecification (Hedges, 1992). Rejection of the null hypoth-
esis (that the model is adequately specified) should then be taken as an indication that 
the assumed model does not provide an adequate approximation to the underlying data 
generating process. At the same time, non-rejection must be cautiously interpreted, as the 
tests may lack power especially when the number of studies is small.

For the example data, we find Q = 103.81, a value so extreme that the chances of it (or an 
even larger value) occurring under a chi-square distribution with 19 degrees of freedom 
are extremely small (i.e., p < 0.0001). Consequently, we would reject the common-effect 
model as a plausible approximation. The same applies to the meta-regression model, for 
which we find QE = 40.44, also a rather unlikely occurrence under a chi-square distribution 
with 18 degrees of freedom (i.e., p = 0.002).
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There are no analogous versions of these types of tests for the random- and mixed-
effects models. However, we can resort to a different approach by examining the residuals 
(and standardized versions thereof) computed from the fitted model, which may reveal a 
mismatch between particular data points and the assumed model.

11.5.2 � Residuals and Standardized Versions Thereof

The raw residual for the ith study is yi i- m̂  (in the common- and random-effects models, 
m̂i  is simply q̂  and m̂ , respectively). The raw residuals should scatter randomly around 
the fitted values, but are not very useful for diagnostic purposes, as they do not account 
for differences in the sampling variances across studies. Moreover, in the random-effects 
and mixed-effects models, (residual) heterogeneity represents an additional source of vari-
ability, which needs to be taken into consideration. Instead, we can compute Pearson (or 
semi-standardized) residuals, which are given by

	 r w yi i i i= ( ),- m̂ 	 (11.18)

where w si i= 1/ 2 in the common-effect and meta-regression models and w si i= 1/( )2 2+t̂  
in the random- and mixed-effects models. As can be seen from (11.16) and (11.17), for the 
common-effect and meta-regression models (where ˆ ˆm qi =  and ˆ ˆm qi i= , respectively), the Q 
and QE statistics are just the sum of the squared Pearson residuals, or put differently, ri

2  is 
the contribution of the ith study to these statistics.

However, Pearson residuals are not properly standardized (in the sense of having unit 
variances), as they do not account for the imprecision in the m̂i  values. In fact, it follows 
from the results laid out in Section 11.2.5 that the variance of the raw residual in the ith 
study can be estimated with (1 )( )2 2- +h si i t̂ , where hi is the ith diagonal element from the 
hat matrix H (for the common-effect and meta-regression models, t̂ 2 0=  by definition). 
Therefore, the (internally) standardized residuals can be computed with
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which have approximately unit variances (imprecision is introduced due to si
2 and t̂ 2 being 

estimates themselves).
We will consider one other type of residual, which is related to the deletion diagnostics to 

be discussed in more detail further below. Here, we compute the residual of a study based 
on a model that excludes the study during the model fitting process. Therefore, we first 
delete the ith study from the dataset and then fit the model of choice using the remaining 
k − 1 studies. When fitting a random- or mixed-effects models, let t̂ ( )

2
-i  denote the estimate 

of τ2 from this model (i.e., the (−i) part in this and other subscripts will be used to indicate 
that the value was computed from the fitted model that excluded the ith study from the 
model fitting). Next, we compute the predicted value for the study that was deleted, which 
we denote by m̂i i( )- . Furthermore, let Var[ ]( )m̂i i-  denote the corresponding variance of the 
predicted value. Then we define the “deleted residual” as r yi i i i i( ) ( )- --= m̂ . Finally,
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yields the standardized deleted residual (or externally standardized residual), which 
again has approximately unit variance (Viechtbauer and Cheung, 2010). Note that 
t̂ ( )

2 0-i =  for the common-effect and meta-regression models by definition. Also, the 
notation can be further simplified depending on the model (i.e., ˆ ˆm qi i i i( ) ( )- -=  for the 

meta-regression model, ˆ ˆm mi i i( ) ( )- -=  for the random-effects model, and ˆ ˆm qi i i( ) ( )- -=  for the 
common-effect model).

11.5.3 � Checking for Outliers

Standardized (deleted) residuals are useful for detecting outliers, that is, studies that do 
not fit the assumed model. The advantage of the deleted residuals is that they are more 
sensitive to detecting outliers. In particular, if a study does not fit the assumed model, 
then this affects the results in two ways. First, the study will introduce additional hetero-
geneity into the data (i.e., t̂ 2 tends to increase), which will get subsumed into the standard 
deviation of the residuals, as shown in the denominator of (11.19). This will shrink the 
standardized residuals toward 0 to some degree, making it more difficult to detect the 
outlying study. In addition, the yi value of an outlying study will pull m̂i  toward it, leading 
to a smaller raw residual, and hence, a smaller standardized residual. By first deleting a 
potentially outlying study from the dataset, both of these effects are eliminated, making 
the standardized deleted residual for the study a more sensitive indicator of whether the 
study fits the model or not.

Assuming that the fitted model is the correct one for the data at hand, the probability 
that a standardized (deleted) residual is larger than ±1.96 is approximately 5%. Therefore, 
while we may expect to observe one or maybe two large values in a set of k = 20 studies, the 
presence of a large number of such values would indicate that the assumed model does 
not represent a good approximation to the underlying data generating process. Based on 
the binomial distribution (with π = 0.05 and k = 20), the chances of observing one or more, 
two or more, and three or more standardized (deleted) residuals this large are 64%, 26%, 
and 8%, respectively.

For the example data, we find four standardized deleted residuals larger than ±1.96 for 
the common-effect model and three for the meta-regression model, again suggesting a 
mismatch between the data and these models. How do the random- and mixed-effects 
models fare? Figure 11.5 shows the standardized deleted residuals for these models. Only 
one and two values larger than ±1.96 are found in these models, respectively, so we do 
not have grounds to question the adequacy of these models in general terms. However, 
study 6 appears to be an outlier in both of these models, which is also recognizable from 
inspection of the plots in Figure 11.1. In the mixed-effects model, the standardized deleted 
residual of study 9 is also larger than 1.96, although just barely.

Interestingly, the scatterplot in Figure 11.1 shows that the estimate of study 8 is further 
away from the regression line than that of study 9 (which may suggest that study 8 is more 
of an outlier than study 9), but the standardized deleted residual for the latter is larger. 
This seeming contradiction can be explained by the fact that study 9 included almost seven 
times as many participants and hence has a much smaller sampling variance than study 
8. Therefore, a deviation as large as the one for study 8 could be accounted for based on 
its sampling variability (plus residual heterogeneity and variance in the predicted value), 
while the residual of study 9 is more unusual given its smaller sampling variance. Also, 
Figure 11.1 suggests that study 14 has an unusually large outcome for a study with such 
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a low dosage, but its standardized deleted residual indicates that this deviation is not 
anomalous under the model. Hence, while forest and scatterplots can be useful visual aids 
for detecting outlying studies, they can also be deceptive.

Besides the standardized deleted residuals, Figure 11.5 also shows the regular standard-
ized residuals computed with (11.19). While there is not much of a difference between 
these two types of residuals for most studies, we do see how the standardized deleted 
residuals are more sensitive to potential outliers, especially for studies 6 and 9. For exam-
ple, for study 6, the deleted residual (i.e., the deviation of the outcome of the study from 
the dotted regression line in the scatterplot in Figure 11.1) is considerably larger than the 
regular residual (i.e., the deviation from the solid regression line). In addition, t̂ ( 6)

2 0.032- =  
is much smaller than the estimate of residual heterogeneity when all studies are included 
(i.e., t̂ 2 0.090= ), further leading to a more sensitive test.

11.5.4 � Baujat and GOSH Plots

Several other graphical tools have been suggested in the literature for detecting outliers 
and sources of (residual) heterogeneity in meta-analytic data. We will now consider two of 
these devices and illustrate their use by applying them to the example dataset.

First, we will consider a type of plot suggested by Baujat and colleagues (Baujat et 
al., 2002). As originally described, the plot shows the contribution of each study to the 
Q-statistic on the x-axis versus the influence of each study on the overall estimate from 
a common-effect model on the y-axis. However, the idea underlying this type of plot can 
be easily generalized to random-effects models and models including moderators (with 
the common-effect model again forming a special case). In general, we plot the squared 
Pearson residual of each study (i.e., ri

2 ) on the x-axis against
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that is, the standardized squared difference between the predicted/fitted value for a study 
with and without the study included in the model fitting. Hence, a study whose observed 

FIGURE 11.5
Standardized (deleted) residuals for the random- and mixed-effects models.
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outcome deviates strongly from its predicted value based on the model will be located on 
the right-hand side of the plot. For the common-effect and the meta-regression models, 
these are the studies that contribute most to the Q (i.e., equation 11.16) and QE (i.e., equation 
11.17) statistics. Furthermore, a study whose predicted value changes strongly depending 
on whether it is included or excluded from the dataset will be located on the top-hand side 
of the plot.

Figure 11.6 shows Baujat plots corresponding to the common-effect and mixed-effects 
models for the illustrative dataset. As we saw earlier, studies 6 and 9 show up again as 
apparent outliers in the context of the mixed-effects model. On the other hand, the plot 
for the common-effect model indicates that study 3 also contributes considerably to the 
overall amount of heterogeneity.

Another type of plot that is useful for detecting outliers and sources of heterogeneity 
is the so-called GOSH (graphical display of study heterogeneity) plot (Olkin et al., 
2012). As originally described, the plot is constructed as follows. First, we fit the com-
mon-effect model to all possible subsets of size 1, …, k of the k studies included in a 
meta-analysis. Therefore, at the one extreme, this will include k models that are each 

fitted to a single observed outcome (in which case q̂ = yi ), then the 
k

2
æ

è
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ø
÷  models fitted to 

all pairwise combinations of two observed outcomes, and so on, until we get to the 

original model using all k outcomes. In total, there are then 
i

k
kk

i=1
= 2 1å æ
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that need to be fitted. We can then plot the model estimates obtained this way (e.g., as 
a histogram and/or using a kernel density estimate) to examine the resulting distribu-
tion. In a homogeneous set of studies, the distribution should be roughly symmetric, 
contiguous, and unimodal. On the other hand, when the distribution is multimodal, 
then this suggests the presence of heterogeneity, possibly due to the presence of outli-
ers and/or distinct subgroupings of studies. Plotting the estimates against some mea-
sure of heterogeneity (e.g., I2) computed within each subset can also help to reveal 
subclusters, which are indicative of heterogeneity.

FIGURE 11.6
Baujat plots for the common-effect and mixed-effects models.
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For the illustrative dataset, a total of 210 − 1 = 1,048,575 subsets can be constructed. The 
left-hand side of Figure 11.7 shows a histogram of the model estimates when fitting the 
common-effect model to each of these subsets (with a kernel density estimate of the dis-
tribution superimposed). The bimodal shape of the distribution is a result of study 6, 
which has considerable impact on the model estimate depending on whether the study is 
included in a subset or not. The influence of this study becomes even more apparent in the 
plot on the right-hand side of Figure 11.7, which shows a scatterplot of the model estimates 
against the corresponding I2 values (using alpha blending). Results from subsets including 
study 6 are shown in light and dark gray otherwise. Inclusion of study 6 in a subset not 
only tends to reduce the size of the model estimate, but also increases the percentage of 
variability that can be attributed to heterogeneity.

The idea underlying the GOSH plot can be generalized to other types of models (includ-
ing models with moderator variables) by examining the distribution of all model coef-
ficients across subsets, plotting them against each other, and against some measure of 
(residual) heterogeneity (e.g., t̂ 2). Note that for a model with q moderator variables and an 
intercept term, a subset must include at least q + 1 studies for the model to be estimable. 
When fitting a mixed-effects model, at least q + 2 studies must be included in a subset so 
that τ2 can also be estimated. Even then, a model may not be estimable in certain subsets. 
For example, for the (mixed-effects) meta-regression model with the dosage moderator, 
the subset including studies 6, 14, 16, and 17 does not allow estimation of β1, since all four 
studies were conducted at the same dosage level of 25 mg. Therefore, only subsets where 
all parameters are estimable can be used for creating the plot.

Figure 11.8 shows such a generalized GOSH plot for the mixed-effects model (a total 
of 1,048,353 models could be fitted). The figure shows the distribution of t̂ 2, b̂0, and b̂1 ,  
and all pairwise scatterplots. Again, subsets including study 6 are shown in light and 
dark gray otherwise. As expected (cf. the scatterplot in Figure 11.1), for subsets that do 
include study 6, the estimate of residual heterogeneity tends to be higher, the model 
intercept tends to be lower, and the slope tends to be steeper. As a result, the distribu-
tions are again bimodal.

FIGURE 11.7
GOSH plot showing the distribution of estimates from the common-effect model based on all possible subsets 
and the bivariate distribution of the estimates and the corresponding I2 values (results from subsets including 
study 6 are shown in light and dark gray otherwise).
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11.5.5 � Testing for Lack of Linearity

For the illustrative dataset, we saw earlier that the meta-regression models suggest an 
increasing relationship between the treatment dosage and the (average) log odds ratio. 
However, when fitting meta-regression models that include continuous moderators, an 
aspect to consider is the linearity of the assumed relationship. Although the scatterplot in 
Figure 11.1 does not suggest any non-linearity of the relationship, several approaches can 
be used to examine the linearity assumption more systematically.

As in regular regression modeling (e.g., Kutner et al., 2004), one can examine a plot of 
each continuous moderator variable against the residuals from the (mixed-effects) meta-
regression model to examine whether patterns are visible that may suggest potential non-
linearity (e.g., a U- or an upside-down U-shape). For a model with a single continuous 
moderator variable, such a plot is not fundamentally different than just the scatterplot of 
the moderator variable against the observed outcomes, although it can be easier to detect 
patterns when the linear trend has been removed from the data by computing the residu-
als. Also, since the residuals are heteroscedastic (in part due to the heteroscedastic nature 
of the sampling variances), it can be useful to place the standardized (deleted) residuals 
on the y-axis (which should have roughly unit variance). The left-hand side of Figure 11.9 
shows such a plot of the standardized residuals from the mixed-effects model. Again, we 
notice the outlier (study 6) in the lower left-hand corner of the plot, but otherwise no appar-
ent curvature in the point cloud.

FIGURE 11.8

GOSH plot for the mixed-effects model showing the distribution of t̂ 2 , b̂0 , and b̂1 and all pairwise scatter-
plots based on all possible subsets (results from subsets including study 6 are shown in light and dark gray 
otherwise).
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It is also possible to test more formally whether the relationship between dosage and 
the outcomes deviates from linearity. As a simple first approximation, one could consider 
fitting polynomial meta-regression models (e.g., adding the squared dosage as an addi-
tional moderator to the mixed-effects model). Doing so in the present case leads to a non-
significant coefficient for the squared dosage term of the model (z2 = −1.26) and hence no 
evidence of non-linearity.

The type of non-linearity that a polynomial model is most sensitive to is constrained 
by the degree of the polynomial included in the model (i.e., a quadratic polynomial 
model will be most sensitive to departures from linearity that are roughly quadratic in 
nature). Therefore, further models involving higher polynomial terms could be exam-
ined. However, when the dataset includes multiple observed outcomes at the same level 
of the moderator (i.e., replicates), we can also conduct a more general lack-of-fit test that is 
much more flexible in terms of the types of non-linearity it can detect. For this, we need to 
extend the lack-of-fit test from regular regression (e.g., Fisher, 1922; Kutner et al., 2004) to 
the mixed-effects meta-regression setting, which can be done as follows.

We start with the linear model (i.e., y x u ei i i i= 0 1 1b b+ + + ) and add dummy variables 
to the model for each level of the continuous moderator. However, this will lead to an 
overparameterized model. To obtain a model where all parameters are estimable, two of 
the dummy variables need to be removed, for example, those for the first and the last 
level (for the purposes of the test, it is completely arbitrary which two levels are removed). 
Therefore, if there are j = 1, ,… � levels, then this yields the model

	 y x d u ei i

j

j ij i i= ,0 1 1

=2

1

b b a+ + + +
-

å
�

	 (11.22)

where dij = 1 if the ith outcome is at level j and 0 otherwise. This model can be fitted with 
the methods described in Section 11.2.5.

For the example data, we therefore include dummy variables corresponding to the 50, 
75, 100, 125, 150, 175, and 200 mg levels of the dosage moderator (leaving out the 25 mg 
and 250 mg levels). The results for this model are shown in Table 11.3. The right-hand side 

FIGURE 11.9
Plot of treatment dosage against the standardized residuals (from the mixed-effects model) and against the 
observed log odds ratios.
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of Figure 11.9 shows a scatterplot of the dosage moderator against the observed outcomes 
with the regression line from the linear model and the fitted values from the lack-of-fit 
model superimposed. As can be seen from the plot, (11.22) yields a “saturated” model that 
provides estimates of the average true log odds ratio for each level of the dosage moderator 
without any kind of implied shape. In fact, the lack-of-fit model is just a different param-
eterization of the model

	 y d u ei

j

j ij i i= ,
=1

�

å + +a 	 (11.23)

which includes a fixed effect for each level of the moderator variable. However, the advan-
tage of the parameterization in (11.22) is that it allows for a direct test of the linearity assump-
tion. In particular, using (11.8), we can conduct an omnibus test of H0 2 1= = = 0: a a� �- .  
This yields QM = 3.57, which we compare against a chi-square distribution with seven 
degrees of freedom. This yields a p-value of 0.83 and hence no evidence that the relation-
ship between dosage and outcomes is non-linear.

11.5.6 � Checking the Normality Assumptions

Various assumptions underlying the models were discussed in Section 11.4, including the 
assumption that the sampling distributions are approximately normal. Let us assume that 
all of the assumptions discussed in that section are fulfilled. Still, this does not imply that 
the observed outcomes themselves are normally distributed. Even in the simplest case 
of the common-effect model, the yi values are a mixture of normally distributed random 
variables with the same mean, θ, but different variances, si

2, which does not yield a normal 
marginal distribution. In addition, in models involving moderators, the marginal distribu-
tion is a mixture of variables with different means. Accordingly, there is no use in examin-
ing the distribution of the yi values directly.

However, when a particular model indeed represents a rough but adequate approxima-
tion to the underlying data generating process, then this implies that the standardized 

TABLE 11.3

Results for the Mixed-Effects Meta-Regression Model to Conduct 
the Lack-of-Fit Test

Term Coefficient Estimate SE z-value

Intercept b̂0 −0.510 0.3035 −1.68

Dose (linear) b̂1 0.008 0.0022 3.50

Dose (50 mg) â1 0.328 0.4916 0.67

Dose (75 mg) â2 −0.125 0.5257 −0.24

Dose (100 mg) â3 0.305 0.3433 0.89

Dose (125 mg) â4 0.328 0.3333 0.99

Dose (150 mg) â5 0.095 0.4135 0.23

Dose (175 mg) â6 0.354 0.5698 0.62

Dose (200 mg) â7 −0.221 0.4392 −0.50
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(deleted) residuals should, at least approximately, follow a standard normal distribution. 
Q-Q plots can be used to examine whether this assumption holds. The left-hand side of 
Figure 11.10 shows such a plot of the standardized deleted residuals from the mixed-effects 
model. A diagonal reference line with an intercept of 0 and a slope of 1 was added to the 
plot. In addition, the dotted lines correspond to an approximate 95% pseudo confidence 
envelope, which was constructed based on the quantiles of sets of pseudo residuals simu-
lated from the given model (for details, see Cook and Weisberg, 1982). Except for study 
6, the points are roughly linear and fall close to the reference line. Therefore, there is no 
indication of non-normality in the standardized deleted residuals.

One other normality assumption not discussed so far underlies the random- and mixed-
effects models. Besides assuming normally distributed sampling errors, the random- and 
mixed-effects models also make the additional assumption that the random effects, ui, are 
normally distributed. In part, this assumption is often made purely because of convenience, 
that is, it greatly simplifies model fitting. However, this assumption can also be justified if 
we imagine that the (residual) heterogeneity in the true outcomes is a result of the influ-
ence of a large number of moderating factors, where each individual factor only has a small 
influence on the size of the true outcomes. When taken together, an approximately normal 
distribution could then emerge due to the central limit theorem. On the other hand, when 
outliers are present and/or when an important and strongly influential moderator has been 
omitted from the model, then this could lead to a non-normal random-effects distribution.

One possible approach to check this assumption is to compute the best linear unbiased 
predictions (BLUPs) of the random effects for a given model (Raudenbush and Bryk, 1985; 
Robinson, 1991) and then examine their distribution. Following the results in section (2.5), 
it can be shown that

	 ˆ ˆu yi i i i= l m( )- 	 (11.24)

provides predictions of the ui values which have minimum mean squared error (among 
the class of linear unbiased estimators), where l t ti is= ˆ ˆ2 2 2/( )+ . If the assumed model is 
correct, then the BLUPs should follow (approximately) a normal distribution.*

*	 There are two technical issues here. First, the computed values are really so-called empirical BLUPs (eBLUPs), 
since the unknown value of τ2 is replaced by an estimate. Second, the eBLUPs do not have constant variance, 
so their marginal distribution may not be normal, even if the correct model is fitted and all assumptions hold.

FIGURE 11.10
Q-Q plots of the standardized deleted residuals and the BLUPs of the random effects for the mixed-effects model.
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The right-hand side of Figure 11.10 shows a Q-Q plot of the BLUPs for the mixed-effects 
model. The reference line again passes through the (0,0) point but has a slope equal to the 
observed standard deviation of the BLUPs (since the BLUPs do not have unit variance). 
Again, the outlying study 6 is quite noticeable, but otherwise, the points do not show any 
indication of a skewed or otherwise non-normal distribution.

However, diagnosing (non-)normality of the standardized (deleted) residuals and/or 
random effects in this manner is a difficult endeavor at best, especially when the number 
of studies included in the meta-analysis is small. Moreover, the distributions can be eas-
ily distorted when other assumptions are not fulfilled, when important moderators have 
been omitted from the model, or when the functional relationship between moderators and 
outcomes is misspecified. Finally, it is unclear how important it is to check the normality 
assumptions in the first place. For example, the assumption of normal errors is generally 
regarded as a relatively minor issue in the context of regular regression models (e.g., Gelman 
and Hill, 2006; Weisberg, 2006). Some simulations studies also indicate that meta-analytic 
models are quite robust to violations of the normality assumption of the random-effects dis-
tribution (Kontopantelis and Reeves, 2012; van den Noortgate and Onghena, 2003). However, 
further research is needed before more general recommendations can be made.

11.6 � Checking for Influential Studies

So far, emphasis has been on assessing model fit and detecting outliers. Another issue 
to consider is the influence of each study on the results from the meta-analysis. Roughly 
speaking, an influential study is a study that exerts a considerable influence on the param-
eter estimates, test statistics, and/or conclusions that can be drawn from a given model. In 
some situations, certain findings (e.g., about the overall effectiveness of a treatment or the 
relevance of a particular moderator) may actually hinge on only one (or a few) of the stud-
ies in the dataset. In that case, it would be prudent to frame the corresponding conclusions 
more cautiously and to point out their volatility.

While it is often the case that outliers are also at least somewhat influential, it is impor-
tant to properly distinguish between these concepts. For example, an outlier may not nec-
essarily have much impact on the results if it comes from a very small study. Therefore, 
the presence of an outlier does not automatically call into question the conclusions drawn 
from the analyses. At the same time, a study whose observed outcome falls close to the fit-
ted value based on the model (i.e., it is not an outlier) might still be influential, for example, 
if it is unusual in terms of its moderator values and its removal from the dataset might lead 
to considerable changes in any observed relationships.

An examination of a forest or scatterplot can already provide some indication whether influ-
ential studies may be present in a given dataset. However, as was the case for outliers, such 
informal approaches can be deceiving. We will therefore consider more rigorous methods for 
assessing and quantifying the influence of each study on various aspects of the fitted model.

11.6.1 � Weights and Hat Values

As described in Section 11.2.5, model fitting is done by means of weighted least squares, 
with weights equal to w si i= 1/ 2 for the common-effect and meta-regression models and 
w si i= 1/( )2 2+t̂  for the random- and mixed-effects models. An examination of the 
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weights (either in their raw form or scaled to a percentage with 100% /´ åw wi i ) can 

reveal which studies have the potential for exerting a strong influence on the results. 
However, in the context of a (mixed-effects) meta-regression model, the values of the 
moderator variables also play a prominent role in determining the potential influence 
of each study on the results. For example, when examining the relationship between the 
treatment dosage and the size of the outcomes in the example dataset, studies with very 
low or very high dosages will tend to be more influential than those with intermediate 
dosage levels.

Therefore, instead of just examining the weights, a more general approach is to compute 
the hat matrix H with (11.9). The values in the ith row of the hat matrix indicate how the 
fitted value of a particular study is a function of the observed values of all k studies (i.e., 

m̂i
j

k

ij jh y=
=1å , where hij is the jth value in the ith row of H). Often, only the diagonal ele-

ments of H are examined (i.e., hii for i, …, k, which is often abbreviated to just hi; cf. Section 
11.5.2), which are called the hat values (or “leverages”) and which indicate to what extent 
the fitted value of a study is influenced by its own observed value. In fact, for the common- 
and random-effects models, each row of the hat matrix (and hence also the diagonal) is 
equal to w wi i/å , so for these models it is fully sufficient to examine the hat values and 

not the entire hat matrix. Moreover, as can be seen, the hat values for these models are 
simply the scaled weights.

However, for meta-regression models, the values in the hat matrix are not only a func-
tion of the weights, but also the moderator variables. Especially studies with unusual val-
ues for the moderator variable(s) (in essence, studies that are outliers in terms of the 
moderator space) will then tend to receive larger hat values. An interesting property of the 

hat values is that they always add up to q + 1 (i.e., 
i

k

iih q
=1

= 1å + ). Hence, the reference value 

(q + 1)/k represents the (hypothetical) scenario where each study would have the same 
leverage on the results.

The left-hand side of Figure 11.11 shows the hat values for the common- and random-
effects models for the example dataset, with the reference line drawn at 1/k, corresponding 
to the case where each study has the same weight in the analysis. This is clearly not the 
case for the common-effect model. In particular, study 7 has a considerably larger leverage 
due to its relatively small sampling variance (and hence larger weight) compared with the 
rest of the studies. On the other hand, for the random-effects model, we see that the hat 
values are nearly equalized. This is a consequence of the relatively large estimate of τ2 com-
pared with the sampling variances of the studies, in which case the weights, and therefore 
the leverages, are dominated by t̂ 2. As a result, each individual study has approximately 
the same influence on the results from the random-effects model.

For the mixed-effects model, the right-hand side of Figure 11.11 provides a heatmap con-
structed on the basis of the entire hat matrix. The hat values are located along the diagonal 
and are marked with dots to make them easier to locate. Especially studies 3 and 6 have 
large leverages, which partly reflects their larger weights, but also their position in the 
moderator space (i.e., at the very low and high ends of the dosage continuum). Studies 14, 
16, and 17 are equally extreme in terms of their dosages (all at the very low end), but their 
larger sampling variances (and hence lower weights) limits their leverages. By examining 
the corresponding rows of the hat matrix, we see that the fitted values for these studies 
are actually mostly a function of the observed outcomes of the other studies (especially 
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studies 3, 5, and 6) and not their own. Finally, study 7, which had high leverage in the 
context of the common-effect model, now only plays a relatively minor role. Therefore, the 
potential impact of a study must be considered with respect to a specific model.

11.6.2 � Cook’s Distances

A high leverage study has the potential to exert considerable influence on the results but 
does not necessarily do so. A study actually becomes influential if the estimates obtained 
from the model change substantially depending on whether the study is included in the 
dataset or not. To determine whether this is the case for a particular study, we can make 
use of an approach introduced earlier where we examine the consequences of deleting the 
study from the dataset.

There are various aspects of a model that can be influenced by a study. Of particular 
interest are the model coefficients themselves (i.e., b̂b  in (mixed-effects) meta-regression 
models or q̂  and m̂  in the common- and random-effects models). In order for a study with 
high leverage to become influential on this aspect of a model, its observed outcome must 
also deviate from the fitted value to a noteworthy degree, that is, it must be an outlier. As 
we have seen earlier, standardized deleted residuals are especially useful for detecting the 
latter. We can put these two ideas together and plot the leverages against the standardized 
deleted residuals. Influential studies will then be located at the top or bottom right-hand 
corner of the plot.

A measure that combines these two pieces of information into a single influence mea-
sure is Cook’s distance (Cook and Weisberg, 1982; Viechtbauer and Cheung, 2010). It can 
be computed with

	 Di i i= ( ) ( )( ),( ) ( )
ˆ ˆ ˆ ˆbb bb bb bb- ¢ ¢ -- -X WX 	 (11.25)

where b̂b( )-i  denotes the estimate of bb  computed with (11.6) when excluding the ith study 
from the model fitting. Written this way, the Cook’s distance of a study can be interpreted 

FIGURE 11.11
Plot of the hat values for the common- and random-effects models and a heatmap of the hat matrix for the 
mixed-effects model.
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as the Mahalanobis distance between the estimated model coefficients based on all k stud-
ies (i.e., b̂b ) and the estimates obtained when the study is excluded from the model fitting 
(i.e., b̂b( )-i ). An equivalent way of expressing Cook’s distance is

	 D
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which in turn can be interpreted as the Mahalanobis distance between the fitted values 
computed based on all k studies (i.e., m̂ j  for j = 1, …, k) and the fitted values when the ith 
study is excluded from the model fitting (i.e., m̂ j i( )-  for j = 1, …, k). Accordingly, a large value 
of Di indicates notable changes in the model coefficients and fitted values depending on 
whether a study is included or removed from the dataset.

The left-hand side of Figure 11.12 shows a scatterplot of the leverages against the stan-
dardized deleted residuals for the mixed-effects model, with the points drawn propor-
tional in size to Cook’s distances. The right-hand side of the figure shows Cook’s distances 
themselves. As we can see, high leverage points that are not outliers are not influential 
(study 3). Moreover, studies that are outliers but with relatively low leverage also do not 
exert much influence on the results (study 9). However, high leverage combined with poor 
fit results in an influential case (study 6).

11.6.3 � Covariance Ratios and Other Deletion Diagnostics

Cook’s distance quantifies the influence of each study on the model coefficients (and hence, 
the fitted values). However, this is not the only aspect of a model that can be affected by 
a study. In fact, a study may have relatively little influence on this part of a model, yet 
its removal can have other noteworthy consequences, which we would also want to be 
aware of.

For example, in random- and mixed-effects models, another important parameter 
besides the model coefficients is the estimate of (residual) heterogeneity. On the left-hand 
side of Figure 11.13, we can see a plot of the τ2 estimates from the mixed-effects model 

FIGURE 11.12
Scatterplot of the leverages versus the standardized deleted residuals and a plot of Cook’s distances for the 
mixed-effects model.
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when each study is removed in turn. The horizontal dashed line corresponds to the esti-
mate of τ2 based on all k studies. Clearly, removal of study 6 leads to a substantial decrease 
in the amount of heterogeneity that is unaccounted for. This also applies to study 9, but to 
a lesser extent. On the other hand, removing study 7 would lead to a less pronounced but 
still discernible increase in the estimate.

Another aspect of all models worth considering is the precision with which we are able to 
estimate the model coefficients. At first sight, one would expect more data to lead to better 
(i.e., more precise) estimates, but this is not always the case. For random- and mixed-effects 
models, studies that introduce considerable (residual) heterogeneity into the data can actually 
lead to decreases in precision. At the same time, it is also informative to determine if there are 
studies in the dataset that are most responsible for driving up the precision of the estimates.

A useful measure for quantifying the effect of each study on this part of a model is the 
covariance ratio (Belsley et al., 1980; Viechtbauer and Cheung, 2010), given by
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where the numerator and denominator are generalized variances (i.e., the determinants 
of equation 7) for the reduced dataset (with the ith study excluded) and the full dataset, 
respectively. Since a smaller (generalized) variance is desirable, covariance ratios below 
one indicate that removal of a study leads to higher precision, while values above one 
indicate a decrease in precision.

The covariance ratios for the mixed-effects model are plotted on the right-hand side of 
Figure 11.13. Not surprisingly, removal of studies 6 and 9, which we identified earlier as 
sources of residual heterogeneity, would lead to increases in precision. Removing study 7, 
on the other hand, would have the opposite effect. Interestingly, study 3 also has a con-
siderable covariance ratio. Recall that despite its high leverage, this study had essentially 
no influence on the model coefficients (i.e., its Cook’s distance was very low). Moreover, it 
had no noteworthy effect on the estimate of τ2. Yet, this study plays an important role, as 
its exclusion would result in substantially less precise estimates of the model coefficients. 

FIGURE 11.13
Plot of the leave-one-out estimates of τ2 as each study is removed in turn and a plot of the covariance ratios for 
the mixed-effects model.
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Therefore, as this example demonstrates, some studies may only have a notable influence 
on this aspect of a model.

11.7 � Other Types of Models

As discussed in Section 11.4, the models considered in this chapter assume that the sam-
pling distributions of the observed outcomes are normal, that the observed outcomes are 
unbiased estimates, and that their sampling variances are known constants. Under certain 
circumstances, at least some of these assumptions are likely to break down.

An important case where we should be worried about violations of these assumption is 
in the context of meta-analyses examining the occurrence of rare events (e.g., Lane, 2013; 
see also Chapter 5). The sampling distributions of measures such as the risk difference 
and the log odds/risk ratio will then be poorly approximated by normal distributions. 
Moreover, estimates of the sampling variances will be very inaccurate, so that it is no lon-
ger acceptable to treat the variances as known constants. As a result of these assumption 
violations, inferential procedures (i.e., tests and confidence intervals) will no longer have 
nominal properties and the results/conclusions obtained cannot be trusted.

Fortunately, there is a wide variety of alternative models and methods available that 
can be used in this context, including Peto’s method, the Mantel–Haenszel method, gen-
eralized linear mixed-effects models (i.e., mixed-effects logistic and Poisson regression), 
the non-central hypergeometric model, and the beta-binomial model (e.g., Mantel and 
Haenszel, 1959; Ma et al., 2016; Stijnen et al., 2010; Yusuf et al., 1985; see also Chapter 5). 
These methods relax certain underlying assumptions and try to model the observed data 
using more appropriate distributions. For example, for the data in Table 11.1, we could 
assume that xi

T  and xi
C  follow binomial distributions and then use logistic mixed-effects 

regression to model the log odds for remission in the treatment and control arms of each 
study. See Jackson et al., 2018 and Chapter 5 for more details.

Analogous model checking procedures as the ones described in this chapter can (and 
should) also be applied for such models. For example, akin to the tests for model mis-
specification described in Section 11.5.1, one can conduct likelihood ratio tests of H0

2 = 0:t  
in random- and mixed-effects logistic regression models. Outliers can again be detected 
by means of an examination of the residuals, although some additional complications arise 
in this context. For example, in logistic regression, we model the log odds in each study 
arm and hence the residuals will reflect deviations from the predicted log odds (or from 
the predicted event probabilities) for each arm. These residuals therefore do not directly 
address the question whether the log odds ratio of a particular study should be considered 
an outlier under a given model.

On the other hand, other methods generalize in a straightforward manner to logistic 
models. For example, GOSH plots could be generated based on the estimated model coef-
ficients (although the computational burden would be increased considerably, especially 
when fitting random/mixed-effects logistic regression models), the lack of linearity test 
could be applied in the same manner, BLUPs of the random effects can be obtained and 
checked for normality, and influence measures such as Cook’s distances and covariance 
ratios can be easily computed.

As discussed earlier, an assumption that applies specifically to random- and mixed-
effects models concerns the nature of the random-effects distribution (i.e., the distribution 
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of the underlying true effects). In practice, we typically assume that the random effects 
are normally distributed. Although it remains unclear how important it is to assess this 
assumption, it nevertheless can be worrisome if a diagnostic procedure (such as a Q-Q plot 
of the BLUPs) suggests considerable non-normality. In case non-normality is detected, one 
could explore models that allow for other types of distributional assumptions with respect 
to the random effects (Baker and Jackson, 2008; Beath, 2014; Lee and Thompson, 2008).

Finally, one additional assumption underlies all of the models described in Section 11.2 
that warrants attention. As described, the models assume that the observed outcomes are 
independent. However, the independence assumption may be violated in various ways. 
For example, multiple outcomes extracted from the same sample of subjects are likely to 
be correlated. Returning to the example dataset, suppose that remission was defined and 
measured in two different ways in a particular study, leading to two log odds ratios that 
can be computed from the study. Then the sampling errors for the two outcomes are prob-
ably correlated (if patients who went into remission under the first definition also have 
higher chances of remission under the second definition). Similarly, if remission was mea-
sured at two different time points within a study, then the two corresponding log odds 
ratios are also probably correlated (if the occurrence of remission at the first time point is 
correlated with remission at the second time point).

Even if each study only provides a single outcome, it is still possible that the indepen-
dence assumption is violated. For example, the underlying true outcomes may be cor-
related when multiple studies were conducted by the same author. Due to similarities in 
patient populations, methods, and procedures across studies (that are not captured by 
relevant moderator variables), the underlying true treatments effects may then be more 
alike for studies conducted by the same author than those conducted by different authors, 
which in essence again violates the independence assumption.

A common approach to deal with such dependencies is to reduce the dataset to one 
where dependencies are avoided (e.g., by selecting only one log odds ratio per study and/
or author). Alternatively, multilevel and multivariate structures in a given dataset can 
be accounted for using appropriate models (e.g., Berkey et al., 1998; Jackson et al., 2011; 
Konstantopoulos, 2011). Model checking (including the detection of outliers and the identi-
fication of influential studies) also remains an important issue in the context of such analy-
ses. Many of the methods discussed in this chapter can be generalized to such models, but 
the details of this are beyond the scope of this chapter.

11.8 � Final Comments

Some final issues are worth commenting on. First of all, many meta-analyses involve only 
a relatively small number of studies. For example, a review of the Cochrane Database 
of Systematic Reviews indicated that the majority of Cochrane reviews contains only a 
handful of studies (Davey et al., 2011). That number tends to be somewhat higher for meta-
analyses published in other outlets and/or for other disciplines (e.g., Cafri et al., 2010; Page 
et al., 2016), but meta-analyses with less than a dozen studies are still commonly encoun-
tered. Some of the techniques described in this chapter may be less informative or relevant 
in that context. At the same time, it is then even more important to check the data for outli-
ers and influential studies, as their impact will tend to be larger in smaller datasets. Hence, 
standardized (deleted) residuals, Cook’s distances, and other influence measures remain 
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useful diagnostic tools. Still, the best one can hope to accomplish in such a situation is to 
identify cases where one particular study yields rather different results than the rest of the 
studies. If multiple studies yield very disparate results, then this will usually be indistin-
guishable from a situation where there is a high amount of heterogeneity in the data.

On the other hand, when k is large, it is important to realize that many of the techniques 
discussed in this chapter are “deletion diagnostics” that remove individual studies from 
the dataset and then examine the consequences thereof. These methods can also be effec-
tive for detecting multiple outliers and influential studies, but the presence of multiple out-
liers can lead to distortions such that none of the true outliers are detected (a phenomenon 
known as masking) or that some studies are incorrectly labeled as outliers (a phenomenon 
known as swamping) (Barnett and Lewis, 1978). Deletion diagnostics involving the simul-
taneous removal of multiple studies will then be required to sort out such intricacies. The 
GOSH plot may be especially useful in this context, as it is based on all possible subsets 
and hence does not require the specification of the number of studies to remove a priori.

For the most part, specific decision rules or cutoffs for deciding when a study should be 
considered an outlier and/or influential have been avoided throughout this chapter. Any 
such guidelines would ultimately be arbitrary (which also applies to the ±1.96 value to 
which the standardized deleted residuals were compared earlier). Instead, emphasis has 
been on visual inspection of the various diagnostic measures. By comparing the relative 
magnitude of the values across studies, one can often easily identify those studies that 
stand out with respect to a particular measure. The plot of Cook’s distances (i.e., Figure 
11.12) is exemplary for this approach.

An important point not discussed so far is the question what one should do when some 
studies are identified as potential outliers and/or influential. To begin with, one should 
check that the data are not contaminated in some way, for example, due to errors in report-
ing or coding. For example, a standard error of the mean that is mistaken for a standard 
deviation can lead to a substantial overestimate of the true standardized mean difference 
or the precision of a mean difference. In the context of the illustrative example, a study 
author may have reported a dosage of “50 mg tid” (for a daily dosage of 150 mg), but this 
may have accidentally been coded as a daily dosage of 50 mg.

However, in many cases, no such simple explanations will be found. In that case, one 
approach that one should never take is to simply remove the unusual studies from the 
analysis. All studies that fit the initial inclusion criteria should be reported and described. 
However, one may still probe the robustness of the analyses by excluding outliers or influ-
ential studies from the dataset. For example, is dosage still a significant when studies 3 
and/or 6 are removed from the illustrative dataset? If the conclusion about the relevance of 
this moderator would be overturned, it would indicate that this finding is not particularly 
robust, and the finding should be described more cautiously. Fortunately, removal of either 
or both studies still yields the same conclusion in this example, which lends more cred-
ibility to the hypothesis that medication dosage is related to the treatment effectiveness.

Moreover, studies yielding unusual results may actually point toward (or rather, raise inter-
esting new hypotheses about) conditions under which the effect or association of interest is 
particularly large or small (Hedges, 1986; Light and Pillemer, 1984). Such post-hoc explana-
tions should, of course, be treated with caution, but they can be an opportunity to learn some-
thing new about the phenomenon being studied. Hence, it is actually in the best interest of the 
reviewer to apply some of the model checking methods described in the present chapter.

As a final practical point, it is worth noting that all of the methods described in this 
chapter are implemented in the R package metafor (Viechtbauer, 2010) (code correspond-
ing to the analyses conducted is provided on the book website). General purpose software 
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packages could also be used for model fitting and extracting diagnostic measures such as 
standardized (deleted) residuals, BLUPs, and Cook’s distances (e.g., with PROC MIXED 
from SAS), but certain specialized plots for meta-analysis (e.g., forest, Baujat, and GOSH 
plots) are then not directly available.
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