
Research Article

Received 12 March 2010, Revised 1 July 2010, Accepted 29 July 2010 Published online 4 October 2010 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.11

Outlier and influence diagnostics
for meta-analysis
Wolfgang Viechtbauera∗† and Mike W.-L. Cheungb

The presence of outliers and influential cases may affect the validity and robustness of the conclusions from a meta-
analysis. While researchers generally agree that it is necessary to examine outlier and influential case diagnostics when
conducting a meta-analysis, limited studies have addressed how to obtain such diagnostic measures in the context of
a meta-analysis. The present paper extends standard diagnostic procedures developed for linear regression analyses to
the meta-analytic fixed- and random/mixed-effects models. Three examples are used to illustrate the usefulness of these
procedures in various research settings. Issues related to these diagnostic procedures in meta-analysis are also discussed.
Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

Meta-analysis is the statistical analysis of effect sizes obtained from a pool of empirical studies. The goal of aggregating the results
from related studies is to obtain information about the overall effect and to examine the influence of study-level characteristics
on the size of the effect. The underlying statistical methods for conducting meta-analyses are generally well-developed (see,
e.g. [1]) and applied on a regular basis in a variety of different disciplines (e.g. psychology, medicine, epidemiology, ecology,
business/consumer research).

Similar to other types of data, it is not uncommon to observe extreme effect size values when conducting a meta-analysis.
As the main objective of a meta-analysis is to provide a reasonable summary of the effect sizes of a body of empirical studies, the
presence of such outliers may distort the conclusions of a meta-analysis. Moreover, if the conclusions of a meta-analysis hinge
on the data of only one or two influential studies, then the robustness of the conclusions are called into question.

Researchers, therefore, generally agree that the effect sizes should be examined for potential outliers and influential cases
when conducting a meta-analysis [2--5]. The most thorough treatment of outlier diagnostics in the context of meta-analysis to
date can be found in the classic book by Hedges and Olkin [2], who devoted a whole chapter to diagnostic procedures for effect
size data. Several graphical methods have also been proposed to inspect the data for unusual cases (e.g. [6, 7]). However, the
methods developed by Hedges and Olkin [2] are only applicable to fixed-effects models. Given that random- and mixed-effects
models are gaining popularity in the meta-analytic context, corresponding methods for outlier and influential case diagnostics
need to be developed.

The present paper introduces several outlier and influence diagnostic procedures for the random- and mixed-effects model in
meta-analysis. These procedures are logical extensions of the standard outlier and case diagnostics for regular regression models
and take both sampling variability and between-study heterogeneity into account. The proposed measures provide a simple
framework for evaluating the potential impact of outliers or influential cases in meta-analysis.

The paper is organized as follows. In the next section, we provide a brief review of various meta-analytic models, including
the random- and mixed-effects model. In Sections 3 and 4, we then show how conventional diagnostic procedures for outlier
and influential case detection in standard linear regression can be extended to these models. Three examples are then used to
illustrate how to apply these procedures in practice. Finally, the discussion section touches upon some important issues relating
to these diagnostic methods and provides some directions for future research.
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2. Meta-analytic models

In this section, we review various meta-analytic models, discuss how these models can be fitted, and show how to obtain
predicted (average) effects under these models.

2.1. Description of the models

Let y1,. . . , yk denote the observed effect size estimates in a set of k independent studies. We use the term ‘effect size’ generically
here, so the yi values may consist of a set of (standardized) mean differences, raw correlation coefficients or their Fisher
z-transformed counterparts, (log) odds or risk ratios, or any other outcome measure typically employed in meta-analyses [8, 9].

We will assume that

yi =�i +ei, (1)

where ei ∼N(0, vi) and �i denotes the true effect in the ith study. Therefore, the observed effect size in the ith study is assumed
to be an unbiased and normally distributed estimate of the corresponding true effect with sampling variance equal to vi . The
sampling variances are assumed to be known. Depending on the outcome measure chosen, one must rely on the asymptotic
behavior of the estimator for these assumptions to be approximately justified. For certain outcome measures, it may also be
helpful to first apply a bias correction, variance stabilizing, and/or normalizing transformation to ensure that the assumptions are
approximately satisfied. For example, Hedges [10] demonstrated how the standardized mean difference can be corrected for its
slight positive bias, while Fisher’s r-to-z-transformation [11] is a variance stabilizing and normalizing transformation for correlation
coefficients.

The true effects may be homogeneous (i.e. �i =� for all i) or heterogeneous (i.e. not all �i equal to each other). Cochran [12]
proposed the so-called Q statistic to test the homogeneity of the effect sizes, which is given by

Q=∑
wi(yi − �̂)2, (2)

where wi =1 / vi and �̂=∑
wiyi /

∑
wi is the inverse-variance weighted estimate of � under the assumption of homogeneity (all

summations go from i=1 to k throughout the paper unless otherwise noted). Under the null hypothesis that all effect sizes are
homogeneous, the Q statistic follows a chi-square distribution with k−1 degrees of freedom.

Homogeneity may be a reasonable assumption when the studies to be meta-analyzed are (near) replicates of each other and
were conducted with samples coming from similar populations. However, this will often not be the case and differences in the
methods and the characteristics of the samples may introduce heterogeneity into the true effects [13, 14]. One possibility is to
consider the heterogeneity to be a result of purely random processes.

This approach leads to the random-effects model, where we assume that

�i =�+ui (3)

and ui ∼N(0,�2), so that � denotes the average true effect and �2 denotes the amount of heterogeneity in the true effects [15].
Assuming independence between ei and ui , it follows that yi ∼N(�,�2 +vi). The goal is then to estimate � and �2. Note that �2 =0
implies homogeneity among the true effects, so that �≡�.

If the variables moderating the size of the effect are known, then we can model the relationship between the effect sizes and
moderators. Typically, we then assume that the true effect for a particular study is a (linear) function of a set of moderators plus
a certain amount of residual heterogeneity, so that

�i =�0 +�1xi1 +·· ·+�pxip +ui, (4)

where xij denotes the value of the jth moderator variable for the ith study, �0 denotes the expected effect size when xij =0
for j=1,. . . , p, and �j denotes how the jth moderator influences the size of the true effect for a one-unit increase in xij . We still

assume that ui ∼N(0,�2), but �2 should now be interpreted as the amount of residual heterogeneity in the effect sizes (that is,
the amount of variability among the true effects not accounted for by the influence of the moderators included in the model).
Since the true effect sizes are now considered to be a function of both fixed and random effects, this model is typically called
the mixed-effects model in the meta-analytic literature [16]. Analyses employing such models are typically called meta-regression
analyses [17, 18].

Note that the mixed-effects model simplifies to the random-effects model when �1 =·· ·=�p =0. Also, �2 =0 now implies that
all of the heterogeneity among the true effects is a result of the moderators included in the model.

2.2. Fitting the meta-analytic models

To fit the random-effects model, we first estimate �2 with one of the various estimators that have been developed for this
purpose (see, e.g. [19] for a comparison of various heterogeneity estimators). One of the most commonly used estimators of �2

was proposed by DerSimonian and Laird [20]. The estimator is given by

�̂2 = Q−(k−1)

c
, (5)
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where Q is the statistic of the homogeneity test given in (2) and c=∑
wi −

∑
w2

i /
∑

wi . When the estimated value is negative,
it is truncated to zero.

Once the amount of heterogeneity is estimated, � can be estimated with

�̂=
∑

w̃iyi∑
w̃i

, (6)

where the weights are now given by w̃i =1 / (vi + �̂2). The variance of �̂ is approximately equal to

Var[�̂]= 1∑
w̃i

. (7)

An approximate 95% confidence interval for � can be obtained with

�̂±1.96
√

Var[�̂]. (8)

See [21] for an adjustment to this approach that provides a confidence interval for � with slightly better coverage probability,
especially when k is small [22].

DerSimonian and Laird’s estimator can be generalized to the meta-analytic mixed-effects model [16]. Using matrix notation
considerably simplifies the notation. Let y denote the column vector of the effect size estimates for the k studies. Next, we define
b= [�0,�1,. . . ,�p]′ and X as the k×(p+1) design matrix that includes 1’s in the first column (corresponding to �0) and the values
of the moderators in the other p columns (corresponding to �1 through �p). Finally, let V=diag[v1, v2,. . . , vk] denote a k×k
diagonal matrix with the sampling variances of the effect size estimates.

Now let QE =y′Py, where P=W−WX(X′WX)−1X′W and W=V−1. The amount of residual heterogeneity can then be esti-
mated with

�̂2 = QE −(k−p−1)

trace[P]
, (9)

with negative values of �̂2 again truncated to zero. Once the amount of residual heterogeneity is estimated, we can estimate the
vector of regression coefficients via weighted least squares using

b̂= (X′W̃X)-1X′W̃y, (10)

where W̃=diag[1 / (v1 + �̂2), 1 / (v2 + �̂2),. . . , 1 / (vk + �̂2)]. The variance–covariance matrix of the parameter estimates in b̂ can be
estimated with

Var[b̂]= (X′W̃X)−1. (11)

Approximate 95% confidence intervals for the model coefficients can be obtained with

�̂j ±1.96
√

Var[�̂j], (12)

where Var[�̂j] is the corresponding diagonal element from Var[b̂] (see [23] for a slight adjustment to this approach, which provides

slightly better coverage probabilities of the confidence intervals). The null hypothesis H0 :�2 =0 under the mixed-effects model can
be tested by comparing the QE statistic against the critical value of a chi-square distribution with k−p−1 degrees of freedom.

Note that the random-effects model is actually just a special case of the mixed-effects model and is obtained by setting X
equal to a column vector of 1’s (QE then simplifies to Q, �̂2 given by (9) then simplifies to the DerSimonian and Laird estimator
given by (5), and b̂ simplifies to �̂).

2.3. Predicted (average) effects

Under the mixed-effects model, E[�i|xi1,. . . , xip]=�0 +�1xi1 +. . . +�pxip, which we will simply denote as �i . Therefore, having

obtained estimates of the regression coefficients, we can estimate the average true effect for the ith study with �̂i = �̂0 + �̂1xi1 +
·· ·+ �̂pxip. Alternatively, the predicted average true effects may also be obtained from the observed effect sizes via the hat matrix.

In particular, for the entire set of k studies, we can write this in matrix notation as l̂=Hy, where H=X(X′W̃′
X)−1X′W̃ is the hat

matrix. The variance of �̂i can be estimated with

Var[�̂i]=hi(vi + �̂2), (13)

where hi is the ith diagonal element of H (the so-called ’leverage’ of the ith study). When �̂2 =0 under the mixed-effects model,
then this suggest that all of the heterogeneity can be accounted for by the moderators included in the model, so �̂i ≡ �̂i then
denotes the estimated true effect (as opposed to the estimated average true effect) for a particular combination of moderator
values.
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In the random-effects model, the predicted average true effect is the same for all k studies, namely �̂i = �̂, with variance
equal to Var[�̂] given by (7). The diagonal elements of the hat matrix are, therefore, equal to hi = w̃i /

∑
w̃i . Here, the meaning

of the term ’leverage’ becomes quite apparent, as the study with the largest hi value is also the study that exerts the largest
influence on �̂.

Finally, note that �̂2 =0 under a random-effects model suggests homogeneity of the true effects, so that �̂i = �̂ then denotes
the predicted true effect for all k studies. The leverages are then equal to hi =wi /

∑
wi .

3. Identifying outliers in a meta-analysis

Many meta-analyses will include at least a few studies yielding observed effects that appear to be outlying or extreme in the
sense of being well separated from the rest of the data. Visual inspection of the data may be one way of identifying unusual
cases, but this approach may be problematic especially when dealing with models involving one or more moderators. Moreover,
the studies included in a meta-analysis are typically of varying sizes (and hence, the sampling variances of the yi values will
differ), further complicating the issue. A more formal approach for identifying outliers is based on an examination of the residuals
in relation to their corresponding standard errors.

Various types of residuals have been defined in the context of linear regression [24], which can be adapted to the meta-analytic
random- and mixed-effects model (and any special cases thereof). One residual to consider is the (internally) studentized residual,
given by

si =
yi − �̂i√

Var[yi − �̂i]
, (14)

where yi and �̂i are the observed and the predicted (average) effect size for the ith study, ei =yi − �̂i is the raw residual, and
Var[yi − �̂i] is the sampling variance of the raw residual, which is equal to Var[yi − �̂i]= (1−hi)(vi + �̂2). Note that �̂i is simply equal
to �̂ for all k studies in the random-effects model.

As yi is involved in the calculation of �̂i , it may have a large influence on �̂i especially if yi deviates strongly from the assumed
model. In fact, if the ith study is indeed an outlier, then �̂i will be pulled toward the yi value, making it more difficult to identify
the outlying study. In addition, the presence of an outlier will lead to an inflated estimate of �2, which in turn results in an
overestimation of the sampling variance of the residual (and hence, a studentized residual that is too small), making it again
more difficult to detect the outlier.

Consequently, following the suggestion of Hedges and Olkin for fixed-effects models [2], we recommend to use the studentized
deleted (or also called the externally studentized) residuals, given by

ti =
yi − �̂i(−i)√

Var[yi − �̂i(−i)]
, (15)

where �̂i(−i) is the predicted average true effect size for the ith study based on the model that actually excludes the ith study
during the model fitting. Therefore, ei(−i) =yi − �̂i(−i) is the so-called ’deleted residual’ for the ith case. As yi and �̂i(−i) are
uncorrelated, (15) simplifies to

ti =
yi − �̂i(−i)√

vi + �̂2
(−i) +Var[�̂i(−i)]

, (16)

where �̂2
(−i) denotes the estimated amount of (residual) heterogeneity and Var[�̂i(−i)] the estimated amount of variability in �̂i(−i)

from the model that excludes the ith study. For the random-effects model, �̂i(−i) should be replaced with �̂(−i).
The equation for the studentized deleted residual given by (16) clearly illustrates the three sources of variability that contribute

to the difference between the observed effect size yi and the predicted average true effect when the ith study actually fits the
assumed model, namely sampling variability, (residual) heterogeneity among the true effects, and imprecision in the predicted
average effect.

If the studies actually follow the assumed model, then the studentized deleted residuals from the set of studies approximately
follow a standard normal distribution. On the other hand, a study that does not fit the assumed model will tend to yield an
observed effect that deviates more strongly from �̂i(−i) (or �̂(−i)) than would be expected based on these three sources of
variability. Hence, its studentized deleted residual will tend to be large.

In fact, just as in standard linear regression (e.g. [25]), the studentized deleted residual for a particular study formalizes a
proper outlier test under a mean shift outlier model. In particular, suppose that the true model is given by

E[�i|xi1,. . . , xip]=�0 +�1xi1 +·· ·+�pxip (17)

except for one study, denoted by ĩ, whose model is given by

E[�ĩ|xĩ1,. . . , xĩp]=�0 +�1xĩ1 +·· ·+�pxĩp +�, (18)
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where � denotes a fixed amount by which the expected value of �ĩ is shifted away from the true model. A test of H0 :�=0

can be easily obtained by adding a dummy variable to the model (i.e. adding a column to X) that is equal to 1 for i= ĩ and 0
otherwise. The parameter estimate corresponding to the dummy variable is then equal to �̂=yĩ − �̂ĩ(−ĩ), the deleted residual for

study ĩ, with standard error equal to SE[�̂]=
√

vĩ + �̂2
(−ĩ)

+Var[�̂ĩ(−ĩ)]. The studentized deleted residual, therefore, corresponds to

the test statistic for the test H0 :�=0. Accordingly, studies with absolute studentized deleted residuals larger than 1.96 may call
for a closer inspection.

Naturally, a certain number of studentized deleted residuals are expected to be this large by chance alone. In fact, assuming
that the model is correctly specified and no outliers are present in the data, approximately 5% of the studentized deleted residuals
would be expected to exceed the bounds ±1.96. Therefore, for example, it would not be surprising to find at least one such value
for k =20. However, finding more than two values this large in a set of 20 studies would then only occur in approximately 8%
of all meta-analyses (i.e. Prob(X>2)≈0.08, where X follows a binomial distribution with �=0.05 and N=20). Based on similar
considerations for other values of k, one could consider finding more than k / 10 studentized deleted residuals larger than ±1.96
in a set of k studies as unusual. However, regardless of the actual number observed, each study with a large studentized
deleted residual should be carefully scrutinized. We will return to this point in more detail in the discussion section of this
paper.

4. Identifying influential cases in a meta-analysis

An outlying case may not be of much consequence if it exerts little influence on the results. However, if the exclusion of a study
from the analysis leads to considerable changes in the fitted model, then the study may be considered to be influential. Case
deletion diagnostics known from linear regression (e.g. [24, 26]) can also be adapted to the context of meta-analysis to identify
such studies.

Following Belsley et al. [26], we can examine the difference between the predicted average effect for the ith study once with
and once without the ith study included in the model fitting. Dividing this difference by the standard error of �̂i , but replacing
�̂2 with �̂2

(−i), yields

DFFITSi =
�̂i − �̂i(−i)√
hi(vi + �̂2

(−i))
, (19)

which essentially indicates by how many standard deviations the predicted average effect for the ith study changes after excluding
the ith study from the model fitting. For random-effects models, we simply need to replace �̂i(−i) with �̂(−i) and �̂i with �̂.

To examine what effect the deletion of the ith study has on the fitted values of all k studies simultaneously, we can calculate
a measure analogous to Cook’s distance [24], which is given in the meta-analytic context by

Di = (b̂− b̂(−i))
′(X′W̃X)(b̂− b̂(−i)) (20)

or equivalently

Di =
∑ (�̂i − �̂i(−i))

2

vi + �̂2
, (21)

where b̂(−i) denotes the vector of parameter estimates from the fitted model after deletion of the ith study. Accordingly, a Di value
can be interpreted as the Mahalanobis distance between the entire set of predicted values once with the ith study included
and once with the ith study excluded from the model fitting. Moreover, letting �2

p′ ,1−	 denote the 100×(1−	)th percentile of a

chi-square distribution with p′ = (p+1) degrees of freedom, note that the set of b values for which

(b̂−b)′(X′W̃X)(b̂−b)=�2
p′ ,1−	 (22)

defines a 100×(1−	)% joint confidence region for the p′ regression coefficients in the model. Therefore, a value of Di equal to
�2

p′ ,1−	 indicates that the deletion of the ith study would move the parameter estimates to the edge of a 100×(1−	)% joint

confidence region based on the complete data. Following Cook and Weisberg [24], we may therefore consider values of Di
exceeding �2

p′ ,0.5 to warrant further inspection.

We can also directly examine the influence of deleting the ith case on each individual parameter estimate [26]. For this, we can
calculate

DFBETASij =
�̂j − �̂j(−i)√

(X′W̃(−i)X)−1
[j′j′]

, (23)

1
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where (X′W̃(−i)X)−1
[j′j′] denotes the value of the (j+1)th diagonal element of the matrix (X′W̃(−i)X)−1 and W̃(−i) =diag[1 / (v1 + �̂2

(−i)), 1 /

(v2 + �̂2
(−i)),. . . , 1 / (vk + �̂2

(−i))]. In the linear regression context, values of DFBETASij greater than 1 are often considered to indicate
influential cases when analyzing small to medium data sets (e.g. [27]), a guideline that may also be useful for the meta-analytic
context (where k generally tends to be small). Note that (23) simplifies to

DFBETASi = (�̂− �̂(−i))

√√√√ k∑
l=1

w̃l(−i) (24)

in the random-effects model, where w̃l(−i) =1 / (vl + �̂2
(−i)). The DFBETASi statistic, therefore, formalizes the common practice of

examining the change in the overall effect size estimate from a random-effects model when excluding each study in turn.
The influence of the ith study can also be examined by means of the change in the variance–covariance matrix of the parameter

estimates when excluding the ith study from the model fitting [26]. For mixed-effects models, we can compute the ratio of the
generalized variances, given by

COVRATIOi =
det[Var[b̂(−i)]]

det[Var[b̂]]
. (25)

For random-effects models, this simplifies to

COVRATIOi =
Var[�̂(−i)]

Var[�̂]
. (26)

A COVRATIOi value below 1, therefore, indicates that removal of the ith study actually yields more precise estimates of the model
coefficients (or equivalently, that addition of the ith study actually reduces precision).

Similarly, large changes in the estimate of �2 after exclusion of the ith study can signal the presence of outliers and/or
influential cases. For example,

Ri =100×(�̂2 − �̂2
(−i)) / �̂2 (27)

quantifies the change (in percent) in the estimate of �2 when the ith study is excluded relative to the estimated amount of
(residual) heterogeneity when all the studies are included. Therefore, a large positive value of Ri indicates that the removal of
the ith study leads to a large decrease in the amount of (residual) heterogeneity, which would be expected to occur if the ith
study is indeed an outlier. Finally, Hedges and Olkin [2] suggested examining changes in the Q (or QE) statistic when excluding
each study in turn. Generally speaking, a closer examination of a particular study is warranted if there are large relative changes
in the various indices for that study when compared with the other studies.

5. Examples

The potential usefulness of the various diagnostic measures presented above will now be illustrated with three examples. The
selected examples are different in various ways, for example, in terms of the effect size measure (i.e. the relative risk, standardized
mean difference, and correlation coefficient), the number of effect sizes (i.e. 13, 26, and 61), and the meta-analytic model used
(i.e. a random-effects model and two mixed-effects models, one with two and the other with three moderators). The examples
demonstrate how the diagnostic measures can be applied in a variety of research settings.

5.1. BCG vaccine for tuberculosis

The first example concerns a set of 13 clinical trials examining the effectiveness of the bacillus Calmette–Guerin (BCG) vaccine for
preventing tuberculosis [28]. For each of the 13 studies, Table I shows the number of tuberculosis positive (TB+) and negative
(TB−) cases in the treated (i.e. vaccinated) and control (i.e. not vaccinated) groups. In addition, the publication year and the
absolute latitude of the study location are indicated.

For each study, we can calculate the relative tuberculosis risk of the treated versus the control group with RRi = (ai / nT
i ) / (ci / nC

i ),

where ai and ci are the number of TB+ cases in the treated and control groups, respectively, and nT
i and nC

i are the total number
of subjects in the respective groups. For the meta-analysis, we use the log relative risk, yi = log(RRi), as the effect size measure,
whose sampling variance is approximately equal to vi = (1 / ai)−(1 / nT

i )+(1 / ci)−(1 / nC
i ) (e.g. [9]). Values of yi below 0 indicate a

lower tuberculosis risk for the vaccinated group.
We will consider a mixed-effects model for these data including publication year and latitude as potential moderators. Including

publication year as a moderator provides information about potential changes in the effectiveness of the vaccine over time. The
latitude of the study location may be considered a surrogate marker for the amount of non-pathogenic mycobacteria in the
environment, which are more abundant closer to the equator and may provide a natural immunity to tuberculosis [28, 29].

Figure 1 shows each of the two moderators plotted against the log relative risk in the 13 studies. The point sizes are drawn
proportional to wi =1 / vi to emphasize differences in the precision of the estimates. Both figures suggest a trend, with higher
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Table I. Results from 13 clinical trials examining the effectiveness of the bacillus Calmette–Guerin (BCG)
vaccine for preventing tuberculosis.

Treated Control

Trial Author(s) Year Absolute latitude TB+ TB− TB+ TB−
1 Aronson 1948 44 4 119 11 128
2 Ferguson and Simes 1949 55 6 300 29 274
3 Rosenthal et al. 1960 42 3 228 11 209
4 Hart and Sutherland 1977 52 62 13 536 248 12 619
5 Frimodt-Moller et al. 1973 13 33 5036 47 5761
6 Stein and Aronson 1953 44 180 1361 372 1079
7 Vandiviere et al. 1973 19 8 2537 10 619
8 TPT Madras 1980 13 505 87 886 499 87 892
9 Coetzee and Berjak 1968 27 29 7470 45 7232

10 Rosenthal et al. 1961 42 17 1699 65 1600
11 Comstock et al. 1974 18 186 50 448 141 27 197
12 Comstock and Webster 1969 33 5 2493 3 2338
13 Comstock et al. 1976 33 27 16 886 29 17 825
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Figure 1. Plots of (a) absolute latitude and (b) publication year against the log relative risk for 13 clinical trials examining the effectiveness of the BCG vaccine
for preventing tuberculosis (points drawn proportional to the inverse of the sampling variances).

vaccine effectiveness further away from the equator and decreasing effectiveness over time. However, some studies (i.e. studies
4, 7, 12, 13) appear to deviate from these trends.

To make the model intercept interpretable, latitude was centered at 33◦ and publication year at 1966 before fitting a
mixed-effects model to these data. When fitting a mixed-effects model with both moderators included simultaneously, the
estimated amount of residual heterogeneity is �̂2 =0.0790 (QE(df=10)=28.33, p<0.002). The estimated model coefficients (with
95% confidence intervals) are equal to �̂0 =−0.71 (−0.93 to −0.49) for the intercept (corresponding to the estimated average log

relative risk at 33◦ absolute latitude in 1966), �̂1 =−0.03 (−0.05 to −0.01) for absolute latitude, and �̂2 =0.00 (−0.03 to 0.03) for
publication year. These results suggest that only absolute latitude is a significant moderator. Fitting two separate mixed-effects
models for the two moderators leads to the same conclusion.

Figure 2 shows the hat values plotted against the studentized deleted residuals with point sizes drawn proportional to the
Cook’s distances. The figure illustrates that the Cook’s distances essentially combine information about leverage and fit of a study.
Most notable is the fourth study (h4 =0.82, t4 =−1.51, D4 =9.64) with its very high leverage. However, while study 4 may be
considered to be influential, it does not appear to be an outlier. On the other hand, studies 7 (h7 =0.07, t7 =−2.65, D7 =0.41)
and 13 (h13 =0.15, t13 =2.06, D13 =0.59) have studentized deleted residuals larger than ±1.96, but are not nearly as influential.
Here, it is also worth noting that removal of studies 7 and 13 leads to the largest reductions in the estimated amount of residual
heterogeneity (i.e. by R7 =43.24% and R13 =26.18%, respectively), while removal of the influential fourth study yields a much
smaller change in the estimate of �2 (i.e. by R4 =14.50%).

The reason for the high leverage value of the fourth study becomes apparent when examining the moderator (i.e. X) space
directly. Figure 3 shows that the two moderators are in fact highly correlated (r =−0.66), with study 4 being a noticeable
exception. As a result, its hat value will be large, making it a high leverage study.
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Figure 2. Plot of the hat values against the studentized deleted residuals for the BCG vaccine data (points drawn proportional to Cook’s distances).
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Figure 3. Plot of absolute latitude against publication year for the BCG vaccine data (points drawn proportional to the hat values).

The influence of the fourth study on the model coefficients is considerable, which is reflected in its large DFBETAS values
(DFBETAS4,0 =−0.87, DFBETAS4,1 =−2.86, and DFBETAS4,2 =−2.47). In fact, neither of the two moderators reaches significance
when the fourth study is removed from the dataset and the mixed-effects model is refitted. This is at least partly a result of the
very high correlation between the two moderators, since each moderator examined individually in the context of a mixed-effects
model is significant when the fourth study is removed. In summary then, these findings leave some doubt as to whether the
varying prevalence of environmental mycobacteria at the study locations or whether changes over time (e.g. in respiratory
hygiene) can account for the differences in the effectiveness of the BCG vaccine.

As a final note, the data can be used to illustrate how the externally studentized residual formalizes an outlier test under the
mean shift outlier model. If we add a moderator to the mixed-effects model that is dummy coded equal to 1 for the fourth
study and equal to 0 for the rest of the studies, then refitting the mixed-effects model yields �̂3 =−1.08 with standard error

equal to SE[�̂3]=0.716. The resulting test statistic is therefore z = �̂3 / SE[�̂3]=−1.51, which corresponds exactly to the externally
studentized residual for the fourth study given earlier (i.e. t4 =−1.51).

5.2. Writing-to-learn interventions

The second example is drawn from the educational research literature and concerns a meta-analysis regarding the effectiveness
of writing-to-learn interventions (i.e. putting increased emphasis on writing assignments/exercises as part of the learning process)
on academic achievement [30]. For illustration purposes, we will focus on a subset of the data, consisting of 26 studies conducted
with high-school or college students (and leaving out one very old study from 1926).

Table II provides information about the publication year, whether the sample consisted of high-school or college students
(dummy variable coded as college =1, high-school =0), the length of the intervention (in weeks), and whether the intervention
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Table II. Results from 26 studies examining the effect of writing-to-learn interventions on academic
achievement.

Study Year College Length Meta yi vi

1 1992 1 15 1 0.65 0.070
2 1994 1 9 0 −0.04 0.019
3 1996 1 1 0 0.03 0.009
4 1985 0 4 1 0.26 0.106
5 1986 1 4 0 0.06 0.040
6 1996 1 15 0 0.77 0.107
7 1994 1 15 1 0.00 0.021
8 1989 1 4 0 0.54 0.083
9 1996 1 14 0 0.20 0.086

10 1998 1 15 0 0.20 0.091
11 1991 1 4 0 −0.16 0.167
12 1985 1 3 0 0.51 0.065
13 1991 0 19 0 0.54 0.061
14 1993 0 12 1 0.37 0.060
15 1987 0 1 0 −0.13 0.037
16 1987 0 1 0 0.18 0.069
17 1993 0 1 0 0.27 0.018
18 1991 1 11 0 −0.32 0.060
19 1991 0 1 0 −0.12 0.023
20 1996 1 15 0 −0.07 0.033
21 1994 1 15 0 0.70 0.265
22 1987 1 2 1 0.49 0.039
23 1992 0 24 1 0.58 0.067
24 1980 1 15 0 0.63 0.168
25 1988 0 15 1 1.46 0.099
26 1989 1 15 0 0.25 0.072

incorporated prompts for ‘metacognitive reflection’ (dummy variable coded as yes =1, no =0) for each of the 26 studies. The
effectiveness of the interventions was quantified in terms of the standardized mean difference (e.g. [8]),

di =
x̄T

i − x̄C
i

si
, (28)

where x̄T
i and x̄C

i are the mean scores for the treatment and control groups on the academic achievement measure used in the
ith study (e.g. grade, exam score), and si is the pooled standard deviation of the scores in the two groups. For the meta-analysis,
we use yi =c(mi)di , where mi =nT

i +nC
i −2, nT

i and nC
i are the sample sizes of the two groups, and c(mi)=1−3 / (4mi −1) is a

correction factor for the slight positive bias in the standardized mean difference [10]. The sampling variance of the standardized
mean difference can be estimated with

vi =
nT

i +nC
i

nT
i nC

i

+ y2
i

2(nT
i +nC

i )
. (29)

Since only the total sample size is reported in [30], we approximate vi by assuming nT
i =nC

i , so vi ≈ (8+y2
i ) / (2Ni), where Ni =nT

i +nC
i

is the total sample size. Table II provides the yi and vi values for each study.
We will consider a mixed-effects model for these data with intervention length and the two dummy variables (metacognition

and college). Figure 4 shows a plot of the effect size estimates as a function of intervention length. High-school and college samples
are distinguished by the plotting symbol (circle versus square, respectively) with interventions prompting for metacognition using
a filled symbol and non-prompting interventions a non-filled symbol. The figure shows that study 25 appears to have a much
larger effect than the rest of the studies and may be an outlier.

The results from the mixed-effects model indicate a significant amount of residual heterogeneity (�̂2 =0.0472; QE(df=22)=
44.14, p<0.005). The estimated model coefficients (with 95% confidence intervals) are equal to �̂0 =0.12 (−0.13 to 0.37) for the

intercept, �̂1 =0.01 (−0.01 to 0.03) for intervention length, �̂2 =0.24 (−0.06 to 0.54) for metacognition, and �̂3 =−0.10 (−0.37
to 0.16) for college. None of the estimated coefficients are, therefore, significantly different from 0 (i.e. all confidence intervals
include the value 0).

Figure 5 shows the studentized deleted residuals, DFFITS values, Cook’s distances, and COVRATIO values for this model (note
that the COVRATIO values are plotted on a log scale, so that deviations below and above 1 can be directly compared). Studies
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Figure 4. Estimated effects of writing-to-learn interventions on academic achievement as a function of intervention length in 26 studies.
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Figure 5. Plot of the (a) studentized deleted residuals; (b) DFFITS values; (c) Cook’s distances; and (d) COVRATIO values for 26 studies examining the effectiveness
of writing-to-learn interventions on academic achievement.

7 and 25 are identified as potential outliers and also appear to be influential cases. The COVRATIO values for these two studies
also suggest that precision could be gained by their removal.

A reexamination of Figure 4 reveals that the standardized mean difference in study 7 is relatively low for an intervention
prompting for metacognitive reflection. After removal of studies 7 and 25, the mixed-effects model suggests a significantly
higher effect for interventions using metacognitive prompts (�̂2 =0.31 with a 95% confidence interval from 0.03 to 0.59) and no
significant amount of residual heterogeneity (�̂2 =0.0144; QE(df=20)=26.07, p=0.16). Since this conclusion about the influence
of metacognitive prompts on the intervention effectiveness can only be reached after removing these two studies, it must be
treated with caution.

5.3. Relationship between organizational commitment and job performance

The third example, coming from the business research literature, is based on a meta-analysis of the relationship between
organizational commitment and salesperson job performance [31]. The meta-analysis comprises a total of 61 correlations based
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on 14 169 individuals. The example, therefore, demonstrates the use of the outlier and influence diagnostics when a large number
of effects are included in a meta-analysis.

Before conducting the meta-analysis, the observed correlation coefficients, denoted by ri , are transformed with Fisher’s r-to-z
transformation [11]. Therefore, we will use

yi =
1

2
ln

[
1+ri

1−ri

]
(30)

as the effect size measure, with vi =1 / (ni −3) as the corresponding sampling variance. These values are provided in Table III.
The results from a random-effects model indicate a significant amount of between-study heterogeneity (�̂2 =0.0166; Q(df=

60)=285.65, p<0.001). The estimated value of �̂ is equal to 0.19 with a 95% confidence interval from 0.15 to 0.23. Figure 6 shows
the studentized deleted residuals, Cook’s distances, and COVRATIO values for this model. Studies 8 and 56 are identified as both
potential outliers and influential cases. The COVRATIO values for these two studies also suggest that precision could be gained
by their removal. For example, without study 8, the estimate of �̂ would be approximately 25% more efficient (i.e. the inverse of
the COVRATIO value for the eighth study).

It is worth noting that none of the Cook’s distances are actually larger than the 50th percentile of a chi-square distribution with
1 degree of freedom (i.e. �2

1;0.5 =0.45). Nevertheless, it is clear from Figure 6 that two of the Cook’s distances are comparatively
large when compared with the other studies. Therefore, any of the aforementioned threshold values should be treated with some
caution and should not replace an examination of the magnitudes of the various influence measures relative to each other.

Finally, this last example also demonstrates that the presence of potentially influential outliers may not necessarily call into
question the conclusions from a meta-analysis. In particular, refitting the random-effects model after removal of studies 8 and
56 still leads to the finding that organizational commitment and job performance are positively (and significantly) correlated
(�̂=0.17 with a 95% confidence interval from 0.14 to 0.20). Ensuring that the conclusions do not hinge on a few unusual studies
therefore helps to demonstrate the robustness of the findings in this example.

6. Discussion

The main objective of this paper was to extend well-known outlier and influence diagnostics from standard linear regression to
the meta-analytic context with particular emphasis on random- and mixed-effects models. The outlier and influence diagnostics
presented in this paper are logical extensions of the corresponding measures in standard linear regression. In fact, when the
sampling variances are homoscedastic (i.e. vi =v for all i) as assumed in standard linear regression, then all of the proposed
measures simplify to the corresponding measures from standard linear regression‡ . Moreover, the studentized deleted residual
for random- and mixed-effects models given in this paper is the logical extension of this measure for fixed-effects models given
by Hedges and Olkin [2].

We have used three examples to illustrate how these procedures could be applied to various research settings. The examples
demonstrate that careful scrutiny of the effect sizes with the help of these procedures can yield important insights that either
strengthen the conclusions from a meta-analysis or leave some doubts regarding their robustness.

While most researchers agree that it is necessary to examine the data for potential outliers and influential studies in a meta-
analysis (e.g. [2--5]), Hunter and Schmidt [32] recommended against the use of outlier analyses in meta-analysis. The primary
reason behind their position on outlier diagnostics is that ‘it is almost impossible to distinguish between large sampling errors
and true outliers (i.e. actual erroneous data)’ (see [33], p. 110).

It is indeed true that unusually large or small effects could just be a result of chance alone. Therefore, the fact that an effect is
particularly large or small should not by itself be taken as grounds for the routine deletion of the study reporting such an effect.
However, it is important to emphasize that we are not advocating the routine deletion of outliers or influential studies. Instead,
the statistics presented in the present paper should be used as part of sensitivity analyses. Some of the examples demonstrate the
tentativeness of certain conclusions. When the removal of just one or two studies has a considerable impact on the conclusions
from a meta-analysis, then these conclusions must be stated with some caution. If the outliers or influential cases do not alter
the conclusions, researchers can be more confident that the meta-analytic findings are robust to outliers or influential cases.

As we are proposing various measures as tools to be used in the context of a sensitivity analysis, we have also omitted a
discussion of methods to control the family-wise Type I error or false discovery rate (e.g. [34]) when using the internally and
externally studentized residuals to screen for outliers. Unquestionably, a certain number of studies will have large residuals simply
due to chance alone even when the model is correctly specified and using such methods would reduce the number of studies
flagged as potential outliers. However, the goal is not to identify which studies are the ‘real’ outliers (essentially no method
will be able to accomplish this whenever chance variation is assumed to be present in our estimates), but to examine whether
we happen to be in the uncomfortable situation where the conclusions from the meta-analysis happen to depend on a few
(potentially unusual) studies.

‡The only exception is Cook’s distance, which will differ by the factor p’. This difference arises as Cook’s distance is derived in standard linear regression via
its relationship to a joint confidence region defined by an F-distribution (e.g. [25, p. 119–120]), while the derivation used in the meta-analytic context is
based on a joint confidence region defined by a chi-square-distribution (see Equation (22)).
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Table III. Results from 61 studies examining the relationship
between organizational commitment and job performance.

Study yi vi

1 0.020 0.0057
2 0.121 0.0044
3 0.090 0.0018
4 0.203 0.0056
5 0.080 0.0065
6 0.040 0.0056
7 0.151 0.0040
8 0.485 0.0013
9 0.245 0.0047

10 0.234 0.0046
11 0.203 0.0088
12 0.234 0.0047
13 0.310 0.0046
14 0.332 0.0065
15 0.448 0.0128
16 0.040 0.0083
17 0.010 0.0233
18 0.151 0.0012
19 0.060 0.0020
20 0.141 0.0059
21 −0.010 0.0132
22 0.365 0.0069
23 0.030 0.0019
24 −0.050 0.0088
25 0.172 0.0044
26 0.266 0.0085
27 0.040 0.0049
28 0.255 0.0068
29 0.060 0.0019
30 0.090 0.0023
31 0.131 0.0033
32 0.310 0.0169
33 −0.161 0.0233
34 0.365 0.0130
35 0.131 0.0032
36 0.141 0.0015
37 0.192 0.0182
38 0.354 0.0036
39 −0.030 0.0161
40 0.310 0.0033
41 0.365 0.0076
42 0.203 0.0278
43 0.050 0.0047
44 0.172 0.0088
45 −0.060 0.0054
46 0.110 0.0108
47 0.576 0.0135
48 0.576 0.0137
49 0.354 0.0066
50 0.234 0.0078
51 0.203 0.0031
52 0.266 0.0019
53 0.080 0.0027
54 0.060 0.0094
55 0.050 0.0026
56 0.725 0.0122
57 0.536 0.0238
58 0.192 0.0115
59 0.090 0.0033
60 0.050 0.0189
61 0.348 0.0023
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Figure 6. Plot of the (a) studentized deleted residuals; (b) Cook’s distances; and (c) COVRATIO values for 61 studies examining the relationship between
organizational commitment and job performance.

Moreover, studies identified as potential outliers should always be carefully scrutinized in terms of their contents. Outliers and
influential cases can actually reveal patterns that may lead to new insights about study characteristics that could be acting as
potential moderators [2, 3, 35]. For example, studies with unusually large or small effects can point to characteristics of treatments
or experimental conditions that produce these types of effects [36]. In some cases, it may also be possible to corroborate the
statistical identification of an outlier in other ways (e.g. when the effect size estimate was computed incorrectly or a moderator
was miscoded). For example, a close examination of the influential fourth study from the BCG vaccine meta-analysis suggests
that using the publication year as a moderator may not be the best choice for examining potential changes in the effectiveness
of the vaccine over time. In particular, the fourth study was already started in 1950 with 89% of the tuberculosis cases actually
occurring during the first 10 years of the study. Coding the year as 1977 for a relative risk that essentially reflects the data up
to 1960 may have contributed to the fourth study becoming such an unusual case. Of course, such findings are exploratory and
data driven and must also be treated with caution. Nevertheless, they may reveal potentially interesting areas for future research.

If the findings of a meta-analysis are sensitive to outliers or influential cases, another interesting direction to pursue during the
analysis is to use models that are more robust in the presence of studies with large residuals. For example, models that allow for
long/heavy-tailed and even skewed distributions for the random effects are proposed in [37--39]. The use of such distributions
results in an automatic downweighting of outliers and therefore provides conclusions that are more robust in the presence of
such cases.

Finally, it is worth noting that all the diagnostic measures presented in the present paper can be easily obtained with the
metafor package (http://cran.r-project.org/package=metafor), an add-on package for conducting meta-analyses with the statistical
software R (http://www.r-project.org). The package documentation and [40] describe how to fit the various meta-analytic models
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and how to obtain the diagnostic measures described in the current paper with the package. It is hoped that the availability of
such software will support the routine use of the proposed methods in practice.
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