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Abstract. To conduct a meta-analysis, one needs to express the results from a set of related studies in terms of an outcome measure, such
as a standardized mean difference, correlation coefficient, or odds ratio. The observed outcome from a single study will differ from the
true value of the outcome measure because of sampling variability. The observed outcomes from a set of related studies measuring the
same outcome will, therefore, not coincide. However, one often finds that the observed outcomes differ more from each other than would
be expected based on sampling variability alone. A likely explanation for this phenomenon is that the true values of the outcome measure
are heterogeneous. One way to account for the heterogeneity is to assume that the heterogeneity is entirely random. Another approach is
to examine whether the heterogeneity in the outcomes can be accounted for, at least in part, by a set of study-level variables describing
the methods, procedures, and samples used in the different studies. The purpose of the present paper is to discuss these different approaches
with particular emphasis on the interpretation of the results and practical issues.
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Introduction

It has been estimated that the number of journals doubles
every 15 years (Meadows, 1998) and given the correspond-
ing increases in journal sizes and publication frequencies,
the growth in the number of scientific papers published ev-
ery year can be assumed to take on even more staggering
proportions. While electronic databases and full-text elec-
tronic versions of journals have made it easier to access and
maintain awareness of the relevant literature, reading and
processing the existing literature is becoming increasingly
difficult.

To address this problem, statistical methods have been
developed over the past three to four decades to facilitate
the systematic review of the literature (Chalmers, Hedges,
& Cooper, 2002). A systematic literature review conducted
with the aid of such methods is called a meta-analysis, a
term that was coined by Gene Glass in 1976. The availabil-
ity of meta-analyses may greatly reduce the amount of time
and effort required by researchers and practitioners to stay
updated on the research within their field, since reading and
processing a single well-conducted and thorough literature
review on a particular topic takes less time and effort than
reading a dozen or sometimes hundreds of articles on the
same issue. Moreover, meta-analyses have been argued to
provide higher quality information in comparison with nar-
rative literature reviews, which may be more subjective,
inefficient, and selective in their scope (e.g., Jackson, 1980;
Light & Pillemer, 1984). Given the increasing rate at which

meta-analyses are being published in various fields since
the beginning of the 1980s (Lee, Bausell, & Berman, 2001;
Schulze, 2004), it appears that researchers have been eager
to assimilate this new technique into their methodological
repertoire.

To conduct a meta-analysis, the relevant outcome of
each study to be included needs to be summarized in such
a way that the results from the different studies are ex-
pressed on a common scale (e.g., Fleiss, 1994; Rosenthal,
1994). Typically, the outcome of interest is some measure
of effect, association, or the size of a group difference (e.g.,
the effectiveness of a treatment, the degree of association
between two constructs, or the amount by which two
groups differ with respect to some characteristic or attrib-
ute). These values then become the data for further analy-
sis, such as in the estimation of an overall effect, associa-
tion, or group difference (e.g., Hedges, 1982). However,
empirical evidence suggests that the effect of a treatment,
the strength of an association, or the size of a group differ-
ence is often not a single unchanging value, but may actu-
ally differ across studies (Field, 2005; Higgins, Thompson,
Deeks, & Altman, 2003; Lipsey & Wilson, 2001b). This
raises the question of how to account for the variability in
the outcomes across studies.

One option is to assume that such differences are entirely
random (Hedges, 1983). An alternative approach is to ex-
amine whether at least part of the variability in the out-
comes can actually be accounted for by systematic differ-
ences between the characteristics of the studies from which
the outcomes have been derived (e.g., Pillemer & Light,
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1980). The purpose of the present paper is to discuss these
different explanations with particular emphasis on the sec-
ond approach, not only because it can lead to more rich and
interesting results, but also because it is likely to be a more
accurate reflection of the true state of affairs in many situ-
ations (Lipsey & Wilson, 2001b).

Meta-Analysis Example

A recently published meta-analysis will be used as an ex-
ample throughout this article to provide a concrete back-
drop for the discussion and to illustrate the methods and
issues discussed. The example concerns the effectiveness
of St. John’s wort for treating depression. St. John’s wort,
extracted from the yellow-flowering herb Hypericum per-
foratum, has long been regarded as a safe and effective
treatment for depression, but clinical studies comparing St.
John’s wort with placebo or standard antidepressant treat-
ment have yielded mixed findings. Linde, Berner, Egger,
and Mulrow (2005) recently conducted a meta-analysis of
double-blind randomized controlled studies to provide a
clarification of the evidence regarding the effectiveness of
St. John’s wort.

Table 1 shows the results from k = 17 studies, comparing
St. John’s wort with placebos. Given are the number of
participants in the treatment and the placebo group (ni

T and

ni
C, respectively), the number of participants who showed

significant improvements in their condition between base-
line and the follow-up assessment in the two experimental
conditions (mi

T and mi
C, respectively), the relative rate of

improvement (the improvement rate in the treatment group
divided by the improvement rate in the placebo group), i.e.,

RRi = (mi
T/ni

T)(mi
C/ni

C),

the log of the relative rate, i.e.,

yi = ln(RRi),

and the estimated amount of sampling variability in the log
relative rate, i.e.,

νi = 1/mi
T − 1/ni

T + 1/mi
C − 1/ni

C.

A relative rate of 1 (or a log relative rate of 0) indicates
equal improvement rates for the St. John’s wort and the
placebo group (i.e., St. John’s wort is no more effective
than placebos), a relative rate greater than 1 (or a log rela-
tive rate greater than 0) indicates a higher rate of improve-
ment for the group receiving St. John’s wort (i.e., St. John’s
wort is more effective than placebos), and a relative rate
below 1 (or a log relative rate below 0) indicates a higher
rate of improvement in the placebo group (i.e., St. John’s
wort is less effective than placebos).

Letting πi
T and πi

C denote the true but unknown proba-
bilities of an improvement in the treatment and placebo

Table 1. Results from 17 studies comparing the effectiveness of St. John’s wort with placebos for treating depression
(Linde et al., 2005)

Study mi
T ni

T mi
C ni

C RRi yi vi Weekly
dosage

Only major
depression

Baseline score Duration in weeks

1 20 25 11 25 1.82 0.60 .061 2.66 No 19.5 8

2 14 20 9 20 1.56 0.44 .083 6.30 No 12.5 4

3 4 25 2 25 2.00 0.69 .670 6.30 Yes 22.7 4

4 20 32 6 33 3.44 1.23 .155 6.30 No 16.5 6

5 28 50 13 55 2.37 0.86 .074 6.30 No 15.8 4

6 34 48 25 49 1.39 0.33 .028 1.68 Yes 23.6 6

7 35 53 12 54 2.97 1.09 .075 6.30 Yes 20.7 4

8 24 49 16 49 1.50 0.41 .063 6.30 Yes 21.1 6

9 45 80 12 79 3.70 1.31 .080 3.50 Yes 19.4 6

10 67 106 22 47 1.35 0.30 .030 7.35 Yes 22.7 6

11 34 60 17 59 1.97 0.68 .055 6.30 No 16.7 6

12 46 70 34 70 1.35 0.30 .023 3.50 Yes 20.9 6

13 55 123 57 124 0.97 –0.03 .020 6.30 Yes 21.5 6

14 23 37 15 35 1.45 0.37 .055 6.30 Yes 19.9 6

15 26 98 19 102 1.42 0.35 .071 7.35[1] Yes 22.5 8

16 46 113 56 116 0.84 –0.17 .022 8.40[1] Yes 22.9 8

17 98 186 80 189 1.24 0.22 .012 6.30 Yes 21.9 6

Notes: ni
T and ni

C = number of participants in the treatment and the placebo group; mi
T and mi

C = number of participants with significant improve-
ments between baseline and the follow-up assessment in the treatment and the placebo group; RRi = relative improvement rate; yi = log of the
relative rate; νi = estimated sampling variance of the log relative rate (see text for equations). [1] The value given is the midpoint of a range of
different dosages used in the study.
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group in the ith study, then θi = ln(πi
T/πi

C) denotes the cor-
responding true but unknown log relative rate. The ob-
served log relative rate yi is a consistent and approximately
normally distributed estimator of the true log relative rate
θi with estimated variance equal to νi (Fleiss, 1994)1.

Also listed in Table 1 are the weekly dosage (in grams)
of the Hypericum extract used in each study, whether a
study was restricted to participants with major depression
or not, the average score on the Hamilton Rating Scale for
Depression (HRSD) at baseline (i.e., before treatment be-
gin), and the number of treatment weeks before response
assessment. The relevance of these variables will be dis-
cussed later on. Because of space considerations and for
didactic purposes, only a subset of the complete dataset
from Linde et al. (2005) is presented here. No substantive
interpretation should, therefore, be attached to the results
of the analyses given later.

It should be emphasized that the statistical methods dis-
cussed in this article are not restricted to meta-analyses us-
ing the (log) relative rate as the outcome measure of choice.
Other outcome measures frequently used in meta-analyses
are the standardized mean difference (the mean difference
between two groups divided by the pooled standard devia-
tion), the correlation coefficient (either in its raw form or
after applying Fisher’s variance stabilizing z-transforma-
tion), and the odds ratio (for more details on these and other
outcome measures used in meta-analyses, see Fleiss, 1994,
and Rosenthal, 1994).

Therefore, regardless of the outcome measure of
choice, let yi denote the observed outcome and θi the cor-
responding true but unknown value of the outcome mea-
sure for the ith study. Depending on the outcome measure
and context, it may be appropriate to call yi a measure of
“effect” or a measure of “association.” For example, the
relative rate could be regarded as an effect measure in the
St. John wort meta-analysis (i.e., yi indicates the effect of
the treatment on the probability of improvement relative
to that of a placebo group). The standardized mean differ-
ence is also usually interpreted as an effect measure, such
as in meta-analyses of studies that compare two experi-
mental or naturally defined groups with respect to some
attribute assessed on a continuous scale (e.g., differences
between men and women with respect to their risk-taking
tendencies; see Byrnes, Miller, & Schafer, 1999). On the
other hand, the correlation coefficient is typically used as
a measure of (linear) association between two variables
(e.g., the validity of employment interviews as predictors
of actual job performance; see McDaniel, Whetzel,
Schmidt, & Maurer, 1994).

The Homogeneous Situation

When presented with the results from a collection of studies
to be included in a meta-analysis, the first thing we may
notice is the fact that the outcomes from the various studies
seldom provide a unanimous picture with respect to the
strength of the effect or association. For example, in the St.
John’s wort meta-analysis (Table 1), the observed relative
rates range from 0.84 to 3.70 with two studies yielding a
relative rate below 1, 11 studies yielding a relative rate be-
tween 1 and 2, and four studies yielding a relative rate high-
er than 2. Therefore, a few studies suggest that St. John’s
wort may actually reduce improvement chances, a good
number of studies indicate small to medium-sized benefits
when taking St. John’s wort, and a handful of studies pro-
vide evidence of more substantial benefits beyond those of
a placebo effect.

However, even studies conducted under identical or
nearly identical conditions may yield different and some-
times contradictory conclusions. Consider, for example,
Study 13 (by Montgomery, Hübner, & Grigoleit, 2000) and
Study 17 (by Lecrubier, Clerc, Didi, & Kieser, 1994) in
Table 1. Both studies used the same weekly dosage of St.
John’s wort (900 mg), both assessed the treatment response
after 6 weeks, both were restricted to participants suffering
from major depression, the average baseline HRSD scores
of the participants were almost identical in the two studies
(21.5 and 21.9, respectively), and yet the first study found
a relative rate of 0.97, while the other found a relative rate
of 1.24. In fact, a 95% confidence interval for the true rel-
ative rate yields the interval bounds (0.74, 1.28) for the first
and (1.01, 1.54) for the second study, once leading to the
conclusion that St. John’s wort is not significantly better
than placebos (the value 1 is included in the confidence
interval) and once leading to the conclusion that St. John’s
wort does provide benefits beyond those offered by place-
bos (the value 1 is not included in the interval)2. While
these two studies actually yield conflicting conclusions, it
may be the case that the true (log) relative rates are exactly
the same in both studies and that the difference in the ob-
served relative rates (and the corresponding difference in
the statistical significance of the findings) is simply a result
of random sampling fluctuations.

In general, the true effectiveness or association may be
exactly the same (“homogeneous”) for all k studies includ-
ed in a meta-analysis (i.e., θi = θ for i = 1, . . ., k) so that
differences between the observed outcomes (i.e., differenc-
es between the yi values) would be a result of sampling
fluctuations alone (Hedges & Vevea, 1998). While each
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� The methods discussed throughout this paper are based on the assumption that the outcome measure used in the meta-analysis is (at least
approximately) normally distributed. Taking the log of the relative rates greatly helps to improve the approximation to the normal distribution
for this outcome measure.

� Since it is approximately true that yi|θi ~ N(θi, νi), where yi denotes the observed log relative risk, νi the estimated sampling variance of yi,
and θi the true log relative risk for the ith study, it follows that yi ± 1.96 √νi gives the bounds of an approximate 95% confidence interval for
the true log relative risk. Exponentiating those bounds yields an approximate 95% confidence interval for the true relative risk in the ith

study.



observed outcome then provides an estimate of the com-
mon θ, a more precise estimate of θ (e.g., the true effec-
tiveness of a treatment or the true association between two
variables) can be easily obtained simply by averaging the
results from the studies. For example, the average of the
log relative rates from Table 1 is equal to 0.53, which cor-
responds to a relative rate of exp(0.53) = 1.70, suggesting
that the improvement rate is 1.7 times higher when treated
with St. John’s wort than when receiving placebos.

A more refined analysis takes into consideration the fact
that the studies included in a meta-analysis are typically not
of equal size. For example, the smallest study (Study 2)
yielded a relative rate of 1.56 based on a total of 40 partic-
ipants, while the largest study (Study 17) yielded a relative
rate of 1.24 based on a total of 375 participants. The differ-
ence in sample size could be incorporated into the analysis
by giving more weight to the latter result, since studies with
larger sample sizes tend to provide more accurate estimates
of θ. In other words, all else being equal, the value of yi

will tend to be closer to θ for a larger study than for a small-
er study, which is reflected by the fact that the amount of
sampling variability in yi tends to decrease as the total sam-
ple size increases (e.g., the estimated amount of sampling
variability is almost seven times larger for Study 2 (ν2 =
.083) than for Study 17 (ν17 = .012)). Since the amount of
sampling variability indicates the degree of imprecision in
an estimate, the common practice in meta-analysis is to
estimate θ by calculating a weighted average of the ob-
served outcomes with

θ̂ = (Σwiyi)/Σwi, (1)

using weights equal to the inverse of the estimated sam-
pling variances (i.e., wi = 1/νi) as indicators of the precision
in the estimates (Hedges, 1982). An approximate 95% con-
fidence interval for θ can then be obtained with

θ̂ ± 1.96√⎯⎯⎯⎯⎯1/Σwi . (2)

For the St. John’s wort data, this approach yields an esti-
mate of θ̂ = 0.33 for the log relative rate, corresponding to
a relative rate of exp(0.33) = 1.39. The bounds of the 95%
confidence interval for the log relative rate are given by
(0.23, 0.42). Converted back to relative rates, the confi-
dence interval bounds are equal to (1.26, 1.52). Note that
the confidence interval does not include the value 1, sug-
gesting that the improvement rate is significantly higher
with St. John’s wort treatment than when receiving place-
bos.

Testing for the Presence of
Heterogeneity

The assumption that the θ̂i values are homogeneous across
studies (so that differences among the observed outcomes

are a result of sampling variability alone) can actually be
tested by calculating

Q = Σwi(yi−θ̂)2, (3)

which we compare against the upper one-sided critical val-
ue of a χ² distribution with k –1 degrees of freedom (e.g.,
Hedges, 1982, 1983). When Q exceeds the critical value,
then this suggests that the observed outcomes differ more
from each other than would be expected based on sampling
variability alone. This is, in fact, what we would expect to
observe if the θi values are not all equal to each other (i.e.,
if the θi values are “heterogeneous”).

For the St. John’s wort meta-analysis, we find that Q =
51.54, which is clearly larger than 26.30, the one-sided crit-
ical χ² value for α = .05 and 16 degrees of freedom. There-
fore, we conclude that the true (log) relative rates are not
the same for all of the studies (i.e., the true (log) relative
rates are heterogeneous).

The Heterogeneous Situation

One way to explain the presence of heterogeneity is to as-
sume that differences among the observed outcomes are not
only a result of random sampling fluctuations, but are also
caused by random variability at the study level (Hedges,
1983; Hedges & Vevea, 1998). To clarify this idea, it is
helpful to think of the mechanism leading to the observed
outcome for a particular study as a two-stage hierarchical
process (see Figure 1).

At the first stage, the true effectiveness of a treatment or
the true association between two variables for a particular
study (i.e., a study’s θi value) is assumed to be determined
by a more or less countless number of unknown factors
specifying, for example, how a study was designed, how it
was carried out, and the circumstances under which it was
conducted. Each factor taken by itself may only have a
small influence on the true effectiveness or association
strength, but in sum these factors yield a distribution of
potential θi value. The actual characteristics of a particular
study then give rise to a random draw from that distribution
of true effects or association strengths, yielding a specific
θi value. The form of the distribution is typically assumed
to be normal, partly for convenience sake (computations
are greatly simplified under this assumption), but also
based on a consideration of the central limit theorem (i.e.,
the sum of a large number of independent variables tends
toward a normal distribution under certain conditions).

Given the specific value of θi for a particular study, the
second stage then concerns the random variability in the
outcome yi that arises out of the sampling of subjects. In
other words, given θi for a particular study, there exists an
entire distribution of potential yi values that we could ob-
serve (i.e., the sampling distribution of yi), but the selection
of an actual sample then yields a specific observed out-
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come. For most outcome measures used in meta-analyses,
the sampling distribution of yi is assumed to be normal,
although this is usually just an approximation that gets
more accurate as the sample sizes within the studies be-
come large. Moreover, larger sample sizes will yield yi val-
ues that are, on average, closer to their respective θi values
than smaller sample sizes.

In summary, we note that the observed outcomes are in-
fluenced by two sources of variability under this model:
heterogeneity among the θi values at the first stage and
sampling variability within the yi values at the second stage,
where only the latter is a function of the sample size within
the studies. In other words, if the sample size within each
study would be very large, then sampling variability essen-
tially becomes negligible in all of the studies (i.e., νi ≈ 0)
and, therefore, yi ≈ θi. Nevertheless, we still would not ex-
pect all of the observed yi values to coincide, since the cor-
responding θi values differ from each other due to random
heterogeneity.

Under this so-called random-effects model, it is no longer
appropriate to speak of “the” effect of a treatment or “the”
association between two variables, since θi is no longer con-
stant across studies. In fact, θi may be positive in some studies
(e.g., corresponding to an effective treatment or a positive

correlation) and negative in others (e.g., corresponding to a
harmful treatment or a negative correlation). However, if θi

really differs randomly across studies, then an appropriate
question would be to ask about the average effect or associa-
tion within the distribution of θi values. For example, for any
particular study, St. John’s wort may be an effective treatment
(θi > 0), no better than placebos (θi = 0), or even a harmful
treatment (θi < 0), but instead of examining whether St. John’s
wort is an effective treatment in all situations, we can now try
to determine whether St. John’s wort is an effective treatment
on average.

The analysis proceeds as follows. First, we estimate the
amount of variability among the θi values, which will be
denoted by τT

2. In other words, τT
2 denotes the amount of

heterogeneity within the distribution of true effects or as-
sociations, or more precisely, the variance of the random
variable producing the θi values. An estimate of τT

2 can be
obtained with the estimator suggested by DerSimonian and
Laird (1986), which is given by

τ̂T
2 =

Q−(k−1)
c

, (4)

with Q as given earlier and

Figure 1. Schematic diagram of the
random-effects model illustrating the
two-step process leading to the ob-
served outcomes.
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c = Σwi −
Σwi

2

Σwi

(a negative value of τ̂T
2 is truncated to zero). Next, we cal-

culate new weights that are equal to wi
∗ = 1/(νi + τ̂T

2) and
then estimate μ, the average (or better: the expected) value
of θi in the distribution of θi values with

μ̂ = (Σwi
∗yi)/Σwi

∗. (5)

Finally, an approximate 95% confidence interval for μ can
be obtained with

μ̂ ± 1.96√⎯⎯⎯⎯⎯1/Σwi
∗ . (6)

Note that when τT
2 is estimated to be zero, then this suggests

the absence of heterogeneity, in which case μ̂ and θ̂ as well
as the respective confidence intervals are identical.

For the St. John’s wort meta-analysis, we find τ̂T
2 = .091

and μ̂ = 0.45. Therefore, the average relative rate is esti-
mated to be equal to exp(0.45) = 1.57, indicating that the
improvement rate is, on average, almost 1.6 times higher
for those receiving St. John’s wort than those receiving
placebos. The bounds of the 95% confidence interval for
μ are equal to (0.27, 0.64), corresponding to relative rates
of (1.31, 1.90). Given that the value 1 does not fall inside
the confidence interval, we conclude that the average
relative rate is significantly higher than 1, indicating
that treatment with St. John’s wort is, on average, effec-
tive3.

However, it needs to be emphasized again that, under
the assumptions of the random-effects model, the true log
relative rate for any particular study is assumed to differ
randomly from μ and may indeed be negative in some
cases (in which case St. John’s wort would actually reduce
the chances of an improvement compared to placebos). If,
indeed, the θi values are normally distributed and the es-
timates μ̂ = 0.45 and τ̂T

2 = .091 are assumed to be free of
error, then we would expect 95% of the true log relative
rates in studies examining the effectiveness of St. John’s
wort to fall between 0.45 – 1.96√⎯⎯⎯⎯.091 = –0.14 and 0.45 +
1.96√⎯⎯⎯⎯.091 = 1.04, which corresponds to the values (0.87,
2.83) in terms of relative rates4. Therefore, in some stud-
ies, the relative rate would be expected to fall below 1. In
fact, from the given information it is easy to calculate that
the true relative rate would be expected to fall below 1 in
roughly 7% of all studies.

The Influence of Moderators

Empirical evidence suggests that heterogeneity is present
in approximately 50% to 75% of all meta-analyses (Field,
2005; Higgins et al., 2003; Lipsey & Wilson, 2001b). A
random-effects model analysis, which assumes that the het-
erogeneity among the θi values is completely unsystematic,
is one approach to account for the presence of heterogene-
ity. However, it is possible, and in some cases rather likely,
that the variability among the θi values is not entirely ran-
dom, but actually quite systematic.

For example, the intensity of a treatment or intervention
(expressed by study-level characteristics such as medica-
tion dosage or intervention length) may influence the out-
come in a rather predictable manner. Suppose, for in-
stance, that the treatment effectiveness is (approximately)
linearly related to the intervention length. Therefore, the
true outcome in the ith study is given by θi = β0 + β1xi,
where xi denotes the intervention length (in weeks) for the
ith study, β0 denotes the treatment effectiveness when xi =
0, and β1 denotes how much the treatment effectiveness
increases for a 1 week increase in intervention length. If
the studies included in the meta-analysis differ with re-
spect to the intervention length used, then the heterogene-
ity among the θi values would not be random, but actually
systematic.

The undifferentiated application of a random-effects
model to a situation where the heterogeneity among the θi

values is systematic can actually lead to misleading or
even nonsensical results. To illustrate this point, consider
the following example. In certain contexts, evidence sug-
gests that θi differs systematically for published journal
articles and dissertations (e.g., Smith, 1980)5. Suppose
now that this is indeed the case for a particular meta-anal-
ysis aggregating the results from a series of journal arti-
cles and dissertations that report the correlation between
two constructs of interest. Then the true correlation in the
ith study is given by θi = β0 + β1xi, with xi = 0 for corre-
lations reported in dissertations and xi = 1 for correlations
reported in journal articles. Consequently, β0 denotes the
true value of the correlation for dissertations and β0 + β1

denotes the true value of the correlation for journal arti-
cles. However, applying a random-effects model to such
data, which assumes that the heterogeneity in the correla-
tions is entirely random, would yield an estimate of μ that

� An inference about μ is an unconditional inference about the expected value of θi in the entire distribution of θi values. An alternative approach
is to make an inference about the average effect or association in the specific set of studies included in the meta-analysis (i.e., θ

__
= Σθi⁄k). The

so-called conditional inference model applies in this case (e.g., Hedges & Vevea, 1998) and all of the results given for the homogeneous
situation are correct, except that θ̂ is then an estimate of θ

__
.

� The interval μ̂ ± 1.96√⎯⎯τ̂T
2 is a so-called 95% credibility interval, as described by Hunter and Schmidt (1990). Assuming that the estimates of

μ and τT
2 are free of error and that the θi values are normally distributed, the 95% credibility interval indicates the range of values where 95%

of the θi values are expected to fall.
� Smith (1980) introduced the term “publication bias” to describe the phenomenon that the more accessible literature (e.g., published journal

articles) may differ in systematic ways from less accessible works (e.g., theses, dissertations, unpublished articles), which, in turn, may bias
the results from a meta-analysis that only focuses on the published literature. A more thorough discussion of this issue is beyond the scope
of the present article, but the interested reader can consult, for example, Rothstein, Sutton, and Borenstein (2005).
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falls somewhere between β0 and β0 + β1, which neither
reflects the correlation for dissertations, nor the correla-
tion for journal articles. Moreover, the estimate of μ will
be either closer to β0 or β0 + β1 depending on how many
dissertations are included in the meta-analysis relative to
the number of journal articles. Finally, the values of θi are
not randomly scattered around μ as assumed by the ran-
dom-effects model, but take on only two possible values,
namely β0 and β0 + β1. In essence, it is unclear what mean-
ing we should attach to the estimate of μ in such a situa-
tion.

As an alternative to a random-effects model analysis,
we can actually try to account for the heterogeneity among
the θi values by modeling the relationship between the
outcome measure of interest and the study-level charac-
teristics that we believe exert some influence on the size
of the outcome. The process of examining how and to
what extent the outcome depends on one or more study-
level characteristics is usually called a moderator analysis
in the meta-analysis literature. Accordingly, the study-lev-
el characteristics examined in such an analysis are typi-
cally called moderators.

Potential Moderators

Any study-level variable that may exert a systematic influ-
ence on the outcome measure can be considered a potential
moderator. For example, when aggregating the results from
studies on the effectiveness of a particular treatment (as mea-
sured, for example, by a relative improvement rate or a stan-
dardized mean difference), we may suspect that treatment
length, intensity, or implementation quality influences the
outcome in a systematic way. The nature of the comparison
or control group may also affect the results (e.g., a treatment
may be less effective when the treatment group is compared
against a control group that receives some form of standard
or alternative care and more effective when the participants
assigned to the control group receive no care whatsoever).
The type of research design and other methodological char-
acteristics may also be relevant in this context (e.g., whether
participants and/or the experimenter were blind with respect
to the group assignment can affect the results in predictable
ways). Other potential moderators may include characteris-
tics of the subjects (e.g., the effectiveness may be higher in
studies excluding patients with comorbidity or depending on
the severity of the condition being treated), characteristics of
the setting (e.g., results may differ depending on whether a
study was conducted in an outpatient or inpatient facility),
and the type of measurement instrument used (e.g., self-re-
port and clinician-administered measures may yield different
results). When meta-analyzing studies that examine the asso-
ciation between two variables, we may suspect that the
strength of the association is influenced, for example, by cer-
tain characteristics of the setting, the subjects, and how the
variables were operationalized.

Naturally, what moderators are considered relevant will
depend on the specific topic at hand and the purpose of the
meta-analysis. Moreover, there are often practical limita-
tions to the moderators that can be examined. For one, it is
only possible to examine the influence of a particular mod-
erator on the outcome of interest if the studies included in
the meta-analysis actually differ with respect to the mod-
erator. For example, if the medication dosage or interven-
tion length was identical in all of the studies included in the
meta-analysis, then it is not possible to examine the influ-
ence of these moderators on the treatment effectiveness.

The ability to examine certain moderators may also be
hampered by a lack of information about the values of the
moderators. For example, the effectiveness of a medication
or an intervention may be moderated by the degree to
which patients adhered to the treatment, but the studies in-
cluded in the meta-analysis may not report this information
(either because of space constraints or because that infor-
mation is not available to the authors of the studies).

Moderator Analysis via
Meta-Regression

Various methods for conducting moderator analyses have
been suggested in the literature (e.g., Glass, 1977; Hedges
& Olkin, 1985; Hunter & Schmidt, 1990; Raudenbush,
1994; Raudenbush & Bryk, 1985; Rosenthal, 1991). The
most general and flexible of these approaches is a regres-
sion analog for meta-analysis called meta-regression. The
specific form of the meta-regression approach described
here is based on a mixed-effects model and is essentially a
generalization of the random-effects model described ear-
lier.

Specifically, instead of assuming that the θi values vary
randomly around a single value μ (as assumed by the ran-
dom-effects model), the mixed-effects model allows the
center of the distribution of θi values to differ systematical-
ly depending on the values of one or more moderator vari-
ables. This idea is depicted graphically in Figure 2, which
again illustrates a two-step process leading to the observed
outcomes.

At the first stage, we now suppose that a distribution of
θi values is centered at a particular expected value E(θi)
that is a linear function of one or more moderators. There-
fore, depending on the moderator values, the expected val-
ue of the distribution is given by

E(θi) = β0 + β1x1i + . . . + βpxpi

where xji denotes the value of the jth moderator for the ith

study, βj denotes how the expected value of θi changes for
a one-unit increase in the corresponding xji value when all
other variables are held constant, and β0 denotes the ex-
pected value of θi when xi = 0 for j = 1, . . ., p (note that
Figure 2 illustrates the situation where E(θi) is influenced
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by only a single continuous moderator like intervention
length, but in many cases we would expect that multiple
moderators exert an influence on the expected value of θi).
The variability around E(θi) is assumed to be random, nor-
mally distributed, and now denotes “residual heterogene-
ity,” which is the result of other unmeasured factors that
introduce additional variability into the θi values. In other
words, residual heterogeneity is that part of the total vari-
ability in the θi values that is not accounted for by the mod-
erators included in the model. Therefore, when a study is
conducted, the values of the moderators determine E(θi),
but a random draw from the distribution around the given
E(θi) value yields the actual value of θi for that study.
Therefore, two studies with the same moderator values
share the same value of E(θi), but only by chance will their
respective θi values coincide.

The second stage of the process leading to the observed
outcomes is identical to that discussed under the random-
effects model. Specifically, given θi for a particular study,
an entire distribution of outcomes could potentially be ob-
served, but selecting a single specific sample yields a single
observed yi value for that study. Consequently, the observed
yi value is expected to differ from θi because of sampling
variability so that two studies that coincidentally share the
same θi value will still differ with respect to their observed
yi values.

According to the mixed-effects model, we can, there-
fore, distinguish between three sources of variability in the
collection of observed outcomes: the systematic heteroge-
neity introduced by the influence of moderators on the E(θi)
values, the random residual heterogeneity around a partic-
ular E(θi) value, and the random sampling variability

Figure 2. Schematic diagram of the
mixed-effects model illustrating the
two-step process leading to the ob-
served outcomes.
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around a study-specific θi value. Again, only the amount
of sampling variability is a function of the sample size with-
in each study.

To actually fit a mixed-effects model to a set of observed
outcomes, we first specify what moderators will be includ-
ed in the model and how the values of the moderators will
be coded. Essentially, this process is the same as specifying
a regression model in primary research. In fact, the model
can encompass the usual extensions for regression models,
such as interactions between moderator variables, polyno-
mial moderator terms, and categorical moderators using ap-
propriate dummy coding. A discussion of these topics is
beyond the scope of this article, but any standard text on
linear models (e.g., Neter, Kutner, Nachtsheim, & Wasser-
man, 1996) should provide more details.

Having specified a model, we then estimate the amount
of residual heterogeneity in the θi values (details are given
in the appendix). Finally, letting τ̂R

2 denote the estimated
amount of residual heterogeneity, estimates of the regres-
sion model parameters and the corresponding standard er-
rors are obtained via weighted least squares (WLS), with
weights set equal to wi

∗ = 1/(νi + τ̂R
2). In some situations, it

may happen that the amount of residual heterogeneity is
estimated to be zero. A value of τ̂R

2 equal to zero suggests
that all of the heterogeneity in the θi values is accounted
for by the moderators included in the model.

Once parameter estimates and corresponding standard
errors have been obtained (which we may denote by b0,
. . ., bp and SE[b0], . . ., SE[bp], respectively), it is possible
to test whether the influence of a particular moderator on
the expected value of θi is statistical significant by divid-
ing the respective parameter estimate by its standard error
and comparing this ratio against the critical values of a
standard normal distribution (i.e., ± 1.96 for α = .05, two-
tailed). The predicted value of E(θi) for a specific combi-
nation of moderator values can also be calculated along
with a corresponding 95% confidence interval for E(θi).
Equations for fitting the mixed-effects model and carrying
out these additional computations are given in the appen-
dix.

In the St. John’s wort meta-analysis, we will consider
two moderators of treatment effectiveness, namely the
treatment intensity and the severity of the condition being
treated. If St. John’s wort does indeed provide benefits be-
yond those offered by placebos, we may suspect that the
treatment effectiveness increases with the intensity of the
treatment. On the other hand, studies conducted with more
severely depressed participants may find lower treatment
effects, if more severe forms of depression tend to be resis-
tant to treatment with St. John’s wort. In fact, these two
moderators may interact such that increases in treatment
intensity yield corresponding increases in treatment effec-
tiveness for less severe forms of depression, but not for

more severe forms of depression. Given these hypotheses,
we now must decide how treatment intensity and condition
severity will be defined in terms of the available data.

Although treatment intensity could be expressed sepa-
rately in terms of the treatment duration and the weekly
dosage of the Hypericum extract used in each study, a new
variable was created that is equal to the product of these
two moderators. Therefore, for reasons to be outlined later,
treatment intensity will be expressed in terms of a single
moderator that indicates the total dosage in grams admin-
istered during the course of each study. Condition severity
will be expressed in terms of the average HRSD score at
baseline. The moderator that indicates whether a study was
restricted to patients suffering from major depression will
not be included in the model, since it overlaps with the
baseline moderator to such a great extent as to be virtually
redundant (the point-biserial correlation between these two
moderators is .84). Finally, since the interaction between
total dosage and baseline score will be examined, the prod-
uct of these two moderators was calculated. To make the
interpretation of the results easier, the total dosage and
baseline values were centered at 34 and 20, their respec-
tively means rounded to the nearest integer6.

Therefore, the model of interest stipulates that the ex-
pected log relative risk E(θi) is equal to β0 + β1(Di – 34)
+ β2(Bi – 20)+ β3(Di – 34)(Bi – 20), where Di denotes the
total dosage and Bi the baseline HRSD score for the ith

study. The estimated amount of residual heterogeneity is
equal to τ̂T

2 = .047 for this model. Given that the total
amount of heterogeneity was estimated to be τ̂T

2 = .091 in
the random-effects model, we can conclude that the mod-
erators account for approximately 100(.091 – .047)/.091
= 48% of the heterogeneity in the true log relative rates.

The parameter estimates, corresponding standard errors,
the test statistics for the parameters, and the corresponding
p-values are given in Table 2. Therefore, we see that the
expected log relative rate is estimated to be equal to 0.477
– 0.006(Di – 34) – 0.067(Bi – 20) – 0.002(Di – 34)(Bi – 20).
Although just above α = .05, the results suggest that St.
John’s wort is more effective for lower baseline HRSD
scores (z = – 1.91, p = .06). On the other hand, the total
dosage of St. John’s wort administered during the course
of a study does not appear to influence the treatment effec-
tiveness (z = – 0.58, p = .56). Finally, the results indicate
that the two moderators do not interact (z = – 0.46, p = .
65).

The influence of the HRSD value at baseline on the
treatment effectiveness becomes more evident if we exam-
ine the predicted average effectiveness of St. John’s wort
for several representative values of this moderator. For ex-
ample, the expected log relative rate for an average baseline
score of 12.5 (the lowest value in the studies considered
here) and a total dosage equal to 34 is estimated to be 0.98
with a 95% confidence interval given by (0.38, 1.59). This
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corresponds to an average relative rate of exp(0.98) = 2.66
with a 95% confidence interval of (1.46, 4.90). This result
suggests that treatment with St. John’s wort is, on average,
significantly better than placebos for milder forms of de-
pression.

On the other hand, for an average baseline score of 23.6
(the highest value in the studies) and the same total dosage
of St. John’s wort, the predicted average relative rate is
1.26 with a 95% confidence equal to (0.99, 1.62). Note
that the confidence interval now includes the value 1, sug-
gesting that St. John’s wort is, on average, no better than
placebos. A plot of the observed relative rates against the
average HRSD scores at baseline is shown in Figure 3.
The size of the points was drawn proportional to the in-

verse sampling variance, emphasizing the fact that obser-
vations are weighted differently in the analysis. The solid
line in the figure shows the predicted average effective-
ness as a function of baseline HRSD score (holding total
dosage constant at 34 grams), while the dashed lines indi-
cate the bounds of the corresponding 95% confidence in-
terval.

Interpretation of Moderator Analysis
Results

The St. John’s wort example demonstrates that it may not
be appropriate in some circumstances to view the effect
of a treatment or the strength of an association as a single
unchanging value. Instead, the treatment effect or associ-
ation strength may vary systematically as a function of
one or more moderator variables. The results from a mod-
erator analysis can have important implications for clin-
ical practice and public policy, as they may suggest under
what conditions and for whom a treatment works best or
when an association is strongest (Light, 1987; Pillemer &
Light, 1980). The proper interpretation of results from a
moderator analysis will be considered below by empha-
sizing some of the limitations inherent to this method.

Correlational Versus Causal Evidence

Moderator analyses are by nature observational studies.
In other words, the meta-analyst simply observes, in ret-
rospect, the characteristics of the studies, samples, and
methods used and examines whether these features are
related to the outcomes in a systematic way. The results
from a moderator analysis, therefore, do not provide any
evidence of a causal relationship between moderators and
outcomes. In particular, it is impossible to rule out the
possibility that some unknown third variable influences
the observed outcomes and also varies systematically
(i.e., is confounded) with the moderator variables of in-
terest, introducing spurious relationships between mod-
erators and observed outcomes that would be absent if the
unknown factor could be held constant. Therefore, a mod-
erator analysis should not be regarded as a procedure to
test causal relationships, but rather as a method to gener-
ate interesting research hypotheses, which can then be
examined further via primary research (Cooper, 1998).

Study-Generated Versus
Synthesis-Generated Evidence

Despite the limitation that moderator analyses can only
provide correlational evidence, moderator analyses allow

Figure 3. Baseline HRSD score versus the observed rela-
tive rate in 17 studies on the effectiveness of St. John’s wort
for treating depression. The solid line indicates the expect-
ed relative rate as predicted from a meta-regression model.
The dashed lines indicate the corresponding 95% confi-
dence interval for the expected relative rate.

Table 2. Results from a mixed-effects model estimating the
expected log relative risk as a function of total dos-
age, baseline HRSD score, and the interaction be-
tween these two moderators (the dosage and base-
line moderators were centered at their respective
means)

Parameter Parameter
estimate

Standard
error

z p

Intercept 0.477 0.0877 5.43 .00

Dosage –0.006 0.0100 –0.58 .56

Baseline –0.067 0.0353 –1.91 .06

Dosage × Baseline –0.002 0.0034 –0.46 .65
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meta-analysts to examine relationships that have never
been investigated in primary research and, therefore,
may provide new insights that could not be obtained from
the individual studies (Cooper, 1998). For example,
(study-generated) evidence of a (causal) relationship be-
tween medication dosage and treatment effectiveness
could be obtained by randomly assigning participants to
several different dosage conditions within a single study
and comparing the results across conditions. However, if
the medication dosage was held constant within each
study, then information about such a dose-response rela-
tionship is lacking. On the other hand, if medication dos-
age varies across studies, then a moderator analysis can
provide (synthesis-generated) evidence about whether
the treatment effectiveness is related to the medication
dosage.

Ecological Fallacy

When conducting moderator analyses of the type discussed
in the present paper, it is important to realize that the unit
of analysis is the study and not the individual participant
within a study. Accordingly, the moderators we can consid-
er in such analyses consist of study-level characteristics
and the relationships we observe, therefore, pertain to rela-
tionships between aggregates. However, relationships ob-
served at the aggregate level may not correspond to rela-
tionships observed at the individual level. Applying infer-
ences from a higher to a lower level of analysis may lead
to the so-called ecological fallacy (Robinson, 1950).

The ecological fallacy can be illustrated with some hy-
pothetical data as shown in Figure 4. Suppose four studies
have been conducted to examine the effectiveness of a

Figure 4. Results from four hypothet-
ical studies on the effectiveness of a
treatment illustrating the ecological
fallacy.
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particular medication. In each of the studies, male and fe-
male participants were randomly assigned to receive ei-
ther the medication or a placebo and the relative improve-
ment rate of the treatment versus the placebo group was
recorded after 1 month of treatment. Figure 4 shows the
results of each study in the form of three separate 2 × 2
tables, one broken down by gender and one for men and
women combined. Note that the relative rate within each
study does not depend on gender. Therefore, at the indi-
vidual level, there is no relationship between treatment ef-
fectiveness and gender. Suppose now that a meta-analyst,
having access only to the combined results, investigates
whether the relative rate depends on the proportion of
women in the sample (a moderator that is examined fre-
quently in meta-analyses). The scatterplot in Figure 4
clearly suggests that the relative rate increases systemati-
cally with the proportion of women in the sample. In fact,
a model that includes the proportion of women in the sam-
ple as a moderator yields a highly significant relationship
with no residual heterogeneity left (i.e., all of the hetero-
geneity is accounted for by this moderator). However, in-
terpreting this findings as evidence that the medication is
more effective for women than for men would be an ex-
ample of the ecological fallacy.

The example is admittedly quite extreme, but it never-
theless demonstrates that one must be careful when inter-
preting the results from a moderator analysis. Moreover,
while the example illustrates the case where a relationship
found at the aggregate level does not apply to the individual
level, it is also possible that a relationship present at the
individual level is absent within the aggregated data. A
general solution to this problem is to obtain the individual-
level data from each study by contacting the primary re-
searchers and to conduct the meta-analysis based on the
raw data (Stewart & Tierney, 2002). However, this may not
be a feasible option in practice since attempts to obtain the
raw data of the individual studies are often unsuccessful
(Wicherts, Borsboom, Kats, & Molenaar, 2006).

Practical Issues in Moderator Analyses

There are several practical issues one has to consider when
conducting moderator analyses and these are highlighted
in this section. Most of these issues actually apply to the
analysis of regression-type models in general, but they are
discussed here because their importance appears to be un-
derappreciated in the meta-analytic context.

Multiple Testing Problem

The studies included in a meta-analysis often differ with
respect to many characteristics, potentially leading to a
large number of moderators that could be examined. How-
ever, the probability that at least one moderator is found to

be statistically significant increases quickly through the ac-
cumulation of Type I error probabilities. For example, sup-
pose 10 moderators are tested that are in reality all unrelat-
ed to the outcome of interest and each test is conducted with
α = .05. While each individual moderator test will, there-
fore, only have a 5% chance of being significant, the prob-
ability of obtaining at least one significant result among the
10 tests is equal to 100(1 – .9510) ≈ 40%. In other words,
it is quite likely that at least one moderator is found to be
significant by chance alone.

The Bonferroni correction (i.e., dividing the α-value of
each test by the number of statistical comparisons to be
performed) is among the simplest methods to deal with
the multiple testing problem, but it also increases the prob-
ability that relevant moderators are going to be overlooked
(a more detailed discussion of the multiple testing prob-
lem is beyond the scope of the present article, but the in-
terested reader can consult, for example, Shaffer, 1995).
Aside from such a purely statistical solution, it is, there-
fore, advisable to limit the number of moderators tested.
Moreover, one should select moderators a priori for inclu-
sion in the model, instead of leaving only those modera-
tors in the model that turn out to be statistically signifi-
cant.

One method that may be useful to reduce the number of
moderators in the model is to combine several moderator
variables into some kind of composite score. While the use
of a composite score implies a loss of detail regarding the
influence of each individual component on the outcome of
interest, one can sometimes achieve a drastic reduction in
the number of moderator variables with this approach. For
example, characteristics that indicate the quality of the
studies included in a meta-analysis are frequently exam-
ined in moderator analyses. However, instead of including
each characteristic by itself in the model, an alternative is
to assign an overall quality score to each study that com-
bines the information about the quality characteristics of
interest. In fact, numerous quality scales have been devel-
oped for this purpose (Moher et al., 1995). A composite
score was also used in the St. John’s wort example. Treat-
ment intensity was expressed in terms of total medication
dosage, combining the dosage and treatment duration in-
formation into a single variable.

Finally, a biological, psychological, social, or other-
wise plausible reason should exist that could, in theory,
explain why and in what direction a particular moderator
would be expected to influence the outcome in a system-
atic manner. Such explanations should be developed be-
fore the moderator analysis is actually carried out, since
post hoc rationalizations may suffer from hindsight bias.

Sample Size Issues

The importance of keeping the number of moderator vari-
ables down to a reasonable level is reinforced by the fact
that the number of studies included in meta-analyses is of-
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ten relatively small. For example, in 24 meta-analyses from
various disciplines, including social, clinical, and organi-
zational psychology, k ranged from 5 to 76 with a mean and
median of 24.7 and 18, respectively (Rosenthal & DiMat-
teo, 2001). Therefore, lessons from research on the statis-
tical properties of regression models when sample sizes are
small (e.g., Babyak, 2004) apply with full force in the con-
text of moderator analyses. In particular, when the number
of moderators included in the model is large and k is small,
then the value of E(θi) for a particular combination of mod-
erator values is going to be estimated so inaccurately as to
be essentially useless for practical purposes. Nevertheless,
the moderators may still appear to account for a large
amount of the heterogeneity even when they are all com-
pletely unrelated to the outcome of interest. Therefore, we
may be misled to believe that we have actually accounted
for much of the heterogeneity when in fact we have simply
fitted the noise in the data.

Numerous rules of thumb have been suggested in the
context of multiple regression to determine how large the
sample size should be relative to the number of predictors
in the model in order to obtain robust conclusions (e.g.,
Green, 1991). While analogous guidelines for moderator
analyses are lacking, it needs to be emphasized that such
rules are typically overly simplistic and ignore the idiosyn-
cratic nature of different studies. Instead of relying on such
crude rules of thumb, an alternative approach is to examine
the actual power of moderator tests (Hedges & Pigott,
2004).

Examining Moderators Individually Versus
Collectively

An inspection of published meta-analyses reveals that au-
thors typically examine one moderator at a time instead of
examining the influence of multiple predictors on the out-
come of interest within a single regression model. This
practice may, at least in part, be an attempt to avoid the
aforementioned problems with small sample sizes. Howev-
er, since moderator variables are often correlated, the con-
clusions drawn from a moderator analysis can differ, some-
times dramatically, depending on the approach chosen
(Steel & Kammeyer-Mueller, 2002; Viswesvaran & San-
chez, 1998).

For example, consider a series of studies examining the
effectiveness of an intervention for treating a particular
condition. Assume that about half of the studies were con-
ducted with participants suffering from a more severe form
of the condition and for whom the intervention is generally
less effective, while the remaining studies were conducted
with participants suffering from a less severe form of the
condition and for whom the intervention is generally more
effective. Now suppose that the intervention length within
each study was actually matched to some extent by the ex-
perimenters to the condition severity. However, assume

that intervention length does not actually have an impact
on the treatment effectiveness in reality. Examining the in-
fluence of intervention length on the treatment effective-
ness without including the condition severity moderator in
the model would then lead to the conclusion that short-term
interventions are more beneficial. On the other hand, in-
cluding both moderators simultaneously in the model
would reveal that intervention length does not influence the
treatment effectiveness.

Prescreening moderators for inclusion in a regression
model through a series of individual tests can also lead to
problems. On the one hand, certain moderators may appear
to be of importance when examined individually, but only
because they are correlated (i.e., confounded) with other
moderators that actually have an influence on the outcome
of interest. Confounding will, therefore, lead to a model
that is too complex, which in turn reduces the power to
detect actual moderators. On the other hand, certain mod-
erators may not appear to influence the outcome of interest
when examined individually, but may play an important
role in a model containing other moderators, a condition
commonly known as suppression (Horst, 1941). Suppres-
sion will, therefore, lead to a model that fails to include
relevant moderators.

In general, the practice of examining moderators indi-
vidually can lead to incorrect conclusions whenever mod-
erators are correlated (Lipsey & Wilson, 2001b). Ideally,
models should be constructed to examine the influence of
multiple moderators simultaneously. The model coeffi-
cients then indicate how much a particular moderator in-
fluences the outcome of interest when holding the values
of other moderators constant.

Subgrouping and Dichotomization

Another practice frequently seen in the context of meta-
analysis is to subgroup the data based on the levels of one
or more moderators and/or to examine the relationship
between a moderator and the outcome of interest within
subsets of studies defined by the levels of other modera-
tors. Going back to the example given in the previous
section, one could fit two separate random-effects models
for the studies with low and with high severity partici-
pants. Furthermore, one could fit separate regressions
models examining the relationship between intervention
length and treatment effectiveness for each level of the
condition severity moderator. While the conclusions
reached this way may correspond to those obtained when
fitting a model containing both the intervention length
and condition severity moderators simultaneously, this
approach is less efficient and suffers from another short-
coming. How well the amount of (residual) heterogeneity
is estimated depends, in part, on the number of studies
included in the analysis (Viechtbauer, 2005). Estimates
of (residual) heterogeneity for subsets of studies are,
therefore, less precise than a single estimate of (residual)
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heterogeneity obtained when analyzing all of the studies
together.

Along with the subgrouping approach one can often find
cases where naturally continuous moderators (such as in-
tervention length) are dichotomized (e.g., into short and
medium/long term interventions). Aside from the loss of
information that results from this practice, dichotomization
can, on the one hand, reduce the power of moderator tests
and, on the other hand, induce relationships where none
actually exist (MacCallum, Zhang, Preacher, & Rucker,
2002). Therefore, while dichotomization may simply be a
necessary consequence of the lack of detail reported in ar-
ticles, this practice should be avoided whenever possible.

Relative Importance of Moderators

The fact that moderators are often correlated induces addi-
tional problems with respect to the interpretation of the re-
sults. When moderators are correlated, then multiple (sets
of) moderators may account for the heterogeneity in the θi

values, which makes it difficult to determine what the most
appropriate model should be. Moreover, in models contain-
ing multiple correlated predictors, it is difficult to deter-
mine how much of the heterogeneity is accounted for by
each moderator in the model (Viswesvaran & Sanchez,
1998). Determining the relative importance of predictors
and predictor selection are problems that have received ex-
tensive attention in the larger context of regression analysis
(e.g., Miller, 2002), but relatively little attention has been
paid to these issues in meta-analysis. With increased em-
phasis on the type of model building advocated here, this
may change in the future.

Missing Data

The decision to examine one moderator at a time is often a
pragmatic one. Reporting practices can vary widely be-
tween authors, journals, and publication types and certain
information may simply not be available to the meta-ana-
lyst based on the study reports. Additional information can
sometimes be obtained by contacting the studies’ authors,
but missing information with respect to the moderator val-
ues is usually a common occurrence.

Missing data of this type raise particular problems when
examining multiple moderators simultaneously. Specifical-
ly, to apply the methods presented in this paper, any study
with a missing value for any of the moderator variables
included in the model would have to be removed from the
analysis (listwise deletion). Given that the number of stud-
ies is already quite small in most meta-analyses, deletion
of cases with missing data can shrink the size of the dataset
to such a degree that it becomes essentially unusable for a
moderator analysis. On the other hand, when examining
one moderator by itself, only those studies would have to

be removed from the analysis with missing data on that
particular moderator (pairwise deletion). More data would,
therefore, be available for the analysis of individual mod-
erators.

However, even if we assume that all of the moderators
are perfectly uncorrelated (so that both approaches could,
in principle, yield the same conclusions), simply deleting
cases with missing values is a less than ideal practice for
dealing with missing data in general (e.g., Schafer & Gra-
ham, 2002) as well as in meta-analysis (Pigott, 2001). The
unbiasedness of results obtained via case deletion is only
assured under certain restrictive assumptions regarding the
reason why the data are missing. Essentially, we would
have to assume that the studies without missing data are
representative of the entire set of studies included in the
meta-analysis. On the other hand, distortions are likely to
occur when, for example, the reason why the data are miss-
ing is related to the value of a moderator itself.

Alternative methods to handle missing data can yield
accurate results under less restrictive assumptions regard-
ing the reason why data are missing (e.g., Schafer & Gra-
ham, 2002), but how to apply these methods to meta-anal-
ysis is still an area of ongoing research (Pigott, 2001). In
essence then, the results from a moderator analysis should
be interpreted with some reservation when there are exten-
sive holes in the data, regardless of whether moderators are
examined individually or in combination.

Testing for Heterogeneity Before a
Moderator Analysis

A moderator analysis is only sensible when the θi values
are actually heterogeneous. The test given by (3) examines
whether the amount of variability among the observed out-
comes is greater than would be expected based on sampling
variability alone. A likely explanation for a significant test
statistic is heterogeneity among the θi values. Therefore,
some meta-analysts will only conduct a moderator analysis
when a test for heterogeneity yields a significant result. In
that sense, we can regard the testing for heterogeneity as a
method that can protect us from making Type I errors in a
moderator analysis (since finding that a moderator is sig-
nificant must be a Type I error by definition when the θi

values are homogeneous).
However, several studies have shown that heterogeneity

tests may have low power to detect heterogeneity when it
is indeed present (e.g., Hedges & Pigott, 2001; Sánchez-
Meca & Marín-Martínez, 1997; Viechtbauer, 2007). More-
over, given the ubiquity of heterogeneity as suggested by
empirical evidence (Field, 2005; Higgins et al., 2003; Lip-
sey & Wilson, 2001b), one may still conduct a moderator
analysis, as long as a model (containing a limited number
of moderators) is specified a priori (Hall & Rosenthal,
1991).
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Using Standard Regression and Analysis of
Variance Models

Some researchers have suggested the use of standard re-
gression and analysis of variance (ANOVA) models to ex-
amine the influence of moderators (Glass, 1977; Hall &
Rosenthal, 1991). In fact, some of the earliest moderator
analyses employed standard regression techniques (e.g.,
Smith & Glass, 1977). A review of recently published
meta-analyses reveals that this practice is still quite com-
mon (Steel & Kammeyer-Mueller, 2002). However, given
that the amount of sampling variability in outcome mea-
sures like the standardized mean difference, the correlation
coefficient, or the (log) relative rate is a function of the
within-study sample size and given the usual variability in
sample sizes across the studies included in a meta-analysis,
the homoscedasticity assumption (i.e., a constant error vari-
ance for all observations) is essentially guaranteed to be
violated in most cases. Therefore, the actual Type I error
rate of moderator tests and the actual coverage probability
of confidence intervals obtained from such analyses may
deviate quite substantially from the nominal values (e.g.,
Hedges & Olkin, 1985). The techniques described in the
present paper are based on weighted least squares methods,
which take into consideration the differential amount of
sampling variability in the observed outcomes and which
generally yield more accurate results (e.g., Steel & Kam-
meyer-Mueller, 2002).

Software Options for Meta-Regression

Moderator analyses of the type discussed in this paper can
be carried out via several general purpose software pack-
ages, including SPSS, SAS, R, S-PLUS, and STATA. An
alternative option are the software packages MetaWin and
Comprehensive Meta-Analysis, which were developed
specifically for conducting meta-analyses. A brief over-
view of these options will be given here.

While SPSS (http://www.spss.com/) does not contain
built-in routines to carry out the required computations, a
set of macros written by David B. Wilson to accompany
the book Practical Meta-Analysis (Lipsey & Wilson,
2001a) can be downloaded from the internet (http://ma-
son.gmu.edu/~dwilsonb/ma.html). In particular, the
metareg.sps macro can be used to fit the meta-regression
models considered in the present paper. Users of SAS
(http://www.sas.com/) can fit the meta-regression models
via the PROC MIXED routine. Tutorials describing this
option have been written by Konstantopoulos and Hedges
(2004) and Sheu and Suzuki (2001). A meta-regression
function for the software packages R (http://www.r-pro-
ject.org/) and S-PLUS (http://www.insightful.com/) can be
downloaded from the author’s website (http://www.
wvbauer.com/) along with instructions describing its use.
User-developed commands for STATA (http://www.

stata.com/) also provide the capabilities to conduct moder-
ator analyses by means of meta-regression models (Sharp,
1998; Sterne, Bradburn, & Egger, 2001). Finally, two soft-
ware packages developed specifically for meta-analytic
purposes, namely MetaWin (http://www.metawinsoft.
com/) and Comprehensive Meta-Analysis (http://www.
metaanalysis.com/), include options for fitting meta-re-
gression models.

Model Extensions and Some Recent
Advances

Some extensions of the meta-regression approach present-
ed in this paper and some recent methodological advances
are discussed in this final section. The discussion will be
brief, but the references given should serve as a starting
point to obtain further information.

Dependent Outcomes

Number of studies and number of observed outcomes were
used synonymously throughout this article. In essence, it
was assumed that each study included in the meta-analysis
supplies a single independent estimate of the outcome of
interest. In practice one may be able to obtain multiple ob-
served outcomes from a single study. When these estimates
are based on a single sample of subjects, then the assump-
tion that the estimates are independent may not be reason-
able. The methods presented in the present paper, therefore,
have to be extended to take into consideration the amount
of covariance between dependent estimates (see, for exam-
ple, Gleser & Olkin, 1994, for more details).

Estimation of Residual Heterogeneity

Although it may not be apparent at first sight, the estimate
of residual heterogeneity in the θi values plays a crucial role
in the analysis. Small changes in τ̂R

2 can sometimes yield
drastic changes in the conclusions. Several different esti-
mators have been suggested for this parameter (e.g., Rau-
denbush, 1994; Sidik & Jonkman, 2005; Thompson &
Sharp, 1999), but it would be beyond the purposes of the
present article to elaborate on their differences. However,
the results of Viechtbauer (2005) suggest that the estimator
of τR

2 given in the appendix is approximately unbiased and
reasonably efficient.

However, how accurately τR
2 is actually approximated

with this estimator depends on the number of studies, the
amount of sampling variability within each study, and the
true value of τR

2. Given the characteristics of most meta-
analyses, τ̂R

2 may actually be a rather crude estimate and
may miss the true value of τR

2 by a substantial amount.
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Therefore, the conclusions from a moderator analysis may
not be very robust because of inaccuracies in the estimate
of τR

2.
One simple yet intuitive method to assess the robustness

of the conclusions is to examine how sensitive the results
are to slight changes in τ̂R

2. Essentially, the moderator anal-
ysis is repeated multiple times using values of τ̂R

2 that are
gradually shifted away from the actual estimate of τ̂R

2 (Rau-
denbush & Bryk, 1985). Conclusions that remain un-
changed under such shifts can be regarded as robust.

Improved Moderator Tests

The problem of imprecision in estimates of τR
2 also affects

the results from a moderator analysis on a more general
level. In particular, note that the parameters of the regres-
sion model given by (7) are estimated via weighted least
squares using the weights wi

∗ = 1/(νi + τ̂R
2). The moderator

analysis actually ignores the fact that τ̂R
2 is estimated from

the data. In fact, not only τ̂R
2, but also the νi values are es-

timates, whose imprecision is ignored. As a result, the ac-
tual Type I error probability of moderator tests will often
be inflated above the nominal α = .05 value. Via simulation
methods, it can be shown, for example, that the actual Type
I error probability in the St. John’s wort meta-analysis for
a single moderator is not equal to .05, but actually closer
to .08. Although the inflation is not very large in this par-
ticular example, there may be cases where the inflation is
more severe. Refined methods that account, at least to some
extent, for the imprecision in estimates of τ̂R

2 and νi have
been developed (e.g., Knapp & Hartung, 2003). Using such
refined methods, it is possible to bring the true Type I error
rate of moderator tests close to the nominal α-value.

Conclusion

Results of meta-analyses have suggested that the outcomes
from the included studies are often heterogeneous (Field,
2005; Higgins et al., 2003; Lipsey & Wilson, 2001b). The
heterogeneity in the estimated treatment effects or associ-
ation strengths may be caused by “artificial sources” (Glas-
ziou & Sanders, 2002), such as improper or lack of ran-
domization (potentially leading to noncomparability of the
experimental groups at the study beginning), lack of blind-
ing, insufficient follow-up length, or use of measurement
instruments with low reliability. Therefore, one of the rea-
sons for the relatively high proportion of meta-analyses
with heterogeneous results may be a consequence of ignor-
ing Slavin’s (1986) claim that only the most relevant and
methodologically sound studies should be included in a
meta-analysis. Nevertheless, empirical evidence suggests
that at least a quarter of the total amount of heterogeneity
in meta-analyses is associated with features of substantive
interest (Lipsey & Wilson, 2001b).

Therefore, moderator analyses may be one of the most
useful aspects of a meta-analysis, as they may indicate un-
der what circumstances and for whom a particular treat-
ment works best, an association is strongest, or, on a more
general level, what study features influence the outcome of
interest in a systematic manner (Lau, Ioannidis, & Schmid,
1998; Light, 1987; Lipsey & Wilson, 2001b; Pillemer &
Light, 1980). Moderator analyses may even allow us to ex-
amine relationships that have never been examined in pri-
mary research (Cooper, 1998). However, part of the goal
of the present paper was to sensitize the reader to the lim-
itations inherent in this method and to the numerous prac-
tical problems one may encounter when conducting a mod-
erator analysis.

The point is not to discourage the use of moderator anal-
yses in general, but to emphasize that we should not ask
more of our data than can actually be obtained from them.
For example, commonly used approaches to moderator
analysis (such as the indiscriminate testing of a large num-
ber of individual moderators or the dichotomization of nat-
urally continuous variables) are likely to yield a large num-
ber of Type I errors. Given that the results from a moderator
analysis is really just the starting point for subsequent re-
search to confirm those findings, much time and effort may
be wasted on research that is fruitless from the onset. A
model containing a limited number of a priori selected
moderators is more likely to yield results that may actually
be replicable in future research.
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Appendix

Equations for conducting a moderator analysis via the
meta-regression approach described in the paper are given
in this appendix. Writing out the equations in algebraic no-
tation is extremely cumbersome when considering more
than one moderator variable simultaneously. The equations
are, therefore, given here in matrix notation.

Let y = [y1 . . . yk]′ denote the (k × 1) vector of observed
outcomes. Moreover, let X denote the (k × (p + 1) matrix
containing the values of the p moderators, with the first
column in X consisting entirely of 1’s corresponding to the
intercept. Finally, let W denote a (k × k) diagonal matrix,
with elements equal to wi = 1/νi. An estimate of the amount
of residual heterogeneity can then be obtained with

τ̂R
2 =

y′Py−(k−p−1)
tr[P]

,

where P = W – WX(X′WX)–1 X′W (e.g., Raudenbush,
1994). This estimator is, in fact, a generalization of the Der-
Simonian-Laird estimator of the total amount of heteroge-
neity given by (4). A negative estimate of τR

2 is truncated
to zero.

Setting the diagonal elements of the W matrix equal to
wi

∗ = 1/(νi + τ̂R
2), the parameter estimates are then obtained

with
b = (X′WX)–1 X′Wy.

The variance-covariance matrix of the parameter estimates
is obtained with

Σ
^

= (X′WX)–1.

Taking the square root of the diagonal elements of Σ
^

yields
the standard errors of the parameter estimates. The influ-
ence of a moderator variable on E(θi) can then be tested by
dividing the respective parameter estimate by its standard
error, which can be compared against the critical values of
a standard normal distribution. For values x1i through xpi of
the moderator variables, the predicted value of E(θi) is
equal to xib, where xi = [1 x1i . . . xpi]. A corresponding 95%
confidence interval is given by

xib ± 1.96√⎯⎯⎯⎯xiΣ̂xi
′ .
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