
STATISTICS IN MEDICINE
Statist. Med. 2007; 26:37–52
Published online 6 February 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2514

Con�dence intervals for the amount of heterogeneity
in meta-analysis

Wolfgang Viechtbauer∗;†

Department of Methodology and Statistics; University of Maastricht; P.O. Box 616;
6200 MD Maastricht; The Netherlands

SUMMARY

E�ect size estimates to be combined in a systematic review are often found to be more variable than one
would expect based on sampling di�erences alone. This is usually interpreted as evidence that the e�ect
sizes are heterogeneous. A random-e�ects model is then often used to account for the heterogeneity in
the e�ect sizes. A novel method for constructing con�dence intervals for the amount of heterogeneity
in the e�ect sizes is proposed that guarantees nominal coverage probabilities even in small samples when
model assumptions are satis�ed. A variety of existing approaches for constructing such con�dence in-
tervals are summarized and the various methods are applied to an example to illustrate their use. A
simulation study reveals that the newly proposed method yields the most accurate coverage probabili-
ties under conditions more analogous to practice, where assumptions about normally distributed e�ect
size estimates and known sampling variances only hold asymptotically. Copyright ? 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Clinical trials examining the same treatment under identical experimental conditions are not
expected to yield the exact same results due to sampling variability. Consequently, the e�ect
size estimates derived from such a set of studies (e.g. the odds ratios, risk di�erences, or risk
ratios) are also not expected to coincide. However, when conducting a meta-analysis, it is
common to �nd additional variability in the e�ect size estimates over and beyond the amount
one would expect based on sampling di�erences alone. This �nding is typically interpreted as
indicating that the e�ect sizes (i.e. the parameters estimated by the corresponding e�ect size
estimates) are heterogeneous [1–5].
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Heterogeneity may be a result of moderators, or in other words, due to systematic dif-
ferences between the studies from which the e�ect size estimates were derived [2–4]. For
example, a higher treatment dose, length, or intensity may yield a higher treatment e�ect
and consequently a higher e�ect size. When information about the relevant characteristics
of the studies are available, then it may be possible to account for the heterogeneity using
appropriately formulated meta-regression models [2, 3, 6].
On the other hand, heterogeneity may also be a result of random di�erences between

the e�ect sizes. In that case, the heterogeneity cannot be accounted for based on a set of
moderators, but can be modelled by assuming that the e�ect sizes themselves are drawn from
a distribution (an e�ect size population), characterized by its mean, indicating the expected
e�ect size, and its variance, indicating the amount of heterogeneity [1].
Several signi�cance tests for the presence of heterogeneity (homogeneity tests) have been

proposed in the literature. The results from the so-called Q-test [1] are usually reported as
part of any systematic review. Wald, likelihood ratio, and score tests for homogeneity have
also been derived [7, 8] and some improvements to the Q-test have been suggested [9, 10].
However, it may be more important to actually quantify the extent of the heterogeneity than
to rely on an overall statistical test to detect its presence [2]. In fact, quantifying the amount
of heterogeneity and exploring its sources are among the most important aspects of systematic
reviews [2–5].
Consequently, a large number of methods have been proposed for estimating the amount

of heterogeneity, including two di�erent method-of-moments estimators [1, 11], maximum-
likelihood [7] and restricted maximum-likelihood estimators [12], and an empirical Bayes
estimator [13]. Estimates of the amount of heterogeneity can also be obtained with fully
Bayesian approaches [14]. Finally, Sidik and Jonkman [15] recently derived another promising
estimator based on weighted least squares.
In addition to a point estimate, it may also be useful to report a con�dence interval for

the amount of heterogeneity, which not only indicates the precision of the heterogeneity esti-
mate, but also communicates all the information contained in corresponding homogeneity tests.
Various methods for constructing such con�dence intervals have been proposed, including pro-
�le likelihood [7], Wald-type [16], and bootstrap [17, 18] con�dence intervals. Biggersta� and
Tweedie [16] devised a method using an approximate distribution of the Q-statistic and Sidik
and Jonkman [15] suggested a method for constructing con�dence intervals based on their
heterogeneity estimator.
In the present paper, a new method for constructing con�dence intervals for the amount

of heterogeneity is proposed, which guarantees nominal coverage probabilities even in small
samples when model assumptions are satis�ed. The proposed method may therefore constitute
an improvement over the existing approaches.
The outline of the paper is as follows. In the next section, the meta-analytic random-

e�ects model is brie�y outlined. In Section 3, the new method for constructing con�dence
intervals for the amount of heterogeneity is described. Various existing methods for con-
structing such intervals are summarized in Section 4. An example is given in Section 5 to
illustrate that the methods can yield noticeably divergent results. Some conjectures about
the properties of the methods are discussed in Section 6. However, since the methods are
not based on closed-form solutions and instead require the use of iterative procedures, it is
di�cult to compare their accuracy analytically. Therefore, Monte-Carlo simulations were con-
ducted to determine whether one of the methods should be preferred over the others. The
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simulation methods and results are described in Section 7. Some �nal remarks conclude the
paper.

2. RANDOM-EFFECTS MODEL

Assume that i=1; : : : ; k independent e�ect size estimates have been derived from a set of
studies. Each e�ect size estimate Yi estimates a corresponding true e�ect size �i and therefore
is subject to sampling error. Letting �i denote the amount by which Yi deviates from its
parameter, we can express this by writing

Yi= �i + �i

We assume that �i ∼N(0; �2i ), where �2i denotes the amount of sampling variability in the ith
e�ect size estimate, and Cov(�i; �i′)=0 for i �= i′ due to independence. Each e�ect size �i is
assumed to be sampled from a population of e�ect sizes with expected value � and variance �2.
Denoting the di�erence between � and �i by ui, we can then write the meta-analytic random-
e�ects model as

Yi=�+ ui + �i

where it is assumed that ui
iid∼ N(0; �2) and Cov(ui; �i′)=0 for all i and i′.

While � denotes the average e�ect size in the population, �2 denotes the amount of het-
erogeneity in the e�ect sizes. The special case where �2 = 0 implies that the e�ect sizes are
homogeneous (�i= �, i=1; : : : ; k) and the resulting model (Yi= � + �i) is usually called the
�xed-e�ects model in meta-analysis. Estimates of the �2i values can be easily computed for all
e�ect size measures typically used in meta-analysis [19] and are treated as known constants.
Therefore, the only unknown parameters in the random-e�ects model are � and �2.

3. Q-PROFILE CONFIDENCE INTERVALS FOR �2

Under the null hypothesis H0 : �2 = 0

Q=
∑ (Yi − �̂)2

�2i
(1)

is distributed �2 with k − 1 degrees of freedom, where �̂=
∑
wiYi=

∑
wi and wi=1=�2i .

Equation (1) is the usual Q-statistic that is used to test whether the e�ect sizes are
homogeneous or not [1]. Now denote �̂=

∑
wiYi=

∑
wi, where wi=1=(�2 + �2i ). It is easy

to show under the random-e�ects model that a generalized Q-statistic, given by

Q(�2)=
∑ (Yi − �̂)2

�2 + �2i
(2)

also follows a �2 distribution with k−1 degrees of freedom (the proof is completely analogous
to the one given by Rao [20, pp. 389–390]). Therefore, letting �2k−1;0:025 and �

2
k−1;0:975 denote
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the 2:5th and 97:5th percentiles of a �2 distribution with k − 1 degrees of freedom, it fol-
lows that P(�2k−1;0:0256Q(�

2)6�2k−1;0:975)=0:95. Using the inversion principle as discussed by
Casella and Berger [21], it follows that the lower and upper bounds of a con�dence interval
with 95 per cent coverage probability are given by those two �̃2 values, where

(Q(�̃2)= �2k−1;0:975; Q(�̃2)= �2k−1;0:025)

The two �̃2 values can be found iteratively by repeatedly computing Q(�2) for increasing �2

values (i.e. by pro�ling the generalized Q-statistic) until the lower and upper critical values of
the �2 distribution are reached. Since negative values of �2 are outside of the parameter space,
this iterative scheme should be constrained to non-negative �2 values and therefore always
yields a non-negative lower bound. If Q(�2 = 0)¡�2k−1;0:025, then this implies that the upper
(and therefore also the lower) bound actually falls below 0. In this case, the interval is set
equal to the null set. A similar approach was recently suggested as a method for constructing
con�dence intervals for the among-group variance in the one-way random e�ects model with
unequal error variances [22].

4. OTHER METHODS FOR CONSTRUCTING CONFIDENCE INTERVALS FOR �2

Various other methods for constructing con�dence intervals for �2 have been proposed in the
literature and are brie�y summarized in the present section.

4.1. Biggersta�–Tweedie con�dence intervals

Biggersta� and Tweedie [16] showed that the expected value and variance of (1) are equal to

E[Q]= (k − 1) +
(
S1 +

S2
S1

)
�2 (3)

and

Var[Q]= 2(k − 1) + 4
(
S1 +

S2
S1

)
�2 + 2

(
S2 − 2S3

S1
+
S22
S21

)
�4 (4)

where St =
∑
(1=�2i )

t . Next, they approximated the distribution of Q with a gamma distribution
with shape and scale parameters equal to

�(�2)=
(E[Q])2

Var[Q]
and �(�2)=

Var[Q]
E[Q]

respectively (the scale parameter given by Biggersta� and Tweedie is usually called the rate
parameter, which is simply the inverse of the scale parameter [21]). Therefore, lower and
upper bounds of a 95 per cent con�dence interval for �2 can be obtained by �nding those
two values of �̃2, such that ∫ ∞

Q=�(�̃2)
f(x|�(�̃2)) dx=0:025
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and ∫ Q=�(�̃2)

0
f(x|�(�̃2)) dx=0:025 (5)

where f(x|�(�2)) denotes the density function of a gamma distribution with shape parameter
�(�2) and scale parameter 1.
The iterative scheme used to �nd the two �̃2 values is again constrained to non-negative

values. Therefore, the lower bound is also always non-negative. If the integral in (5) is smaller
than 0.025 for �̃2 = 0, then the upper (and therefore also the lower) bound falls below 0 and
the interval is equal to the null set.

4.2. Pro�le likelihood con�dence intervals

Since Yi ∼N(�; �2 + �2i ) under the random-e�ects model, the log-likelihood function of �
and �2 is given by

l(�; �2)= − 1
2
∑
ln(�2 + �2i )− 1

2
∑ (Yi − �)2

�2 + �2i

leaving out the additive constant. Maximum-likelihood (ML) estimates of � and �2 are then
easily obtained by starting with an initial guess for �2 and iterating until convergence between
the two estimating equations

�̂=
∑
wiYi∑
wi

(6)

and

�̂2 =
∑
w2i [(Yi − �̂)2 − �2i ]∑

w2i

with wi=1=(�2 + �2i ) [23]. Should �̂
2 converge to a negative value, it is truncated to zero.

Denote the �nal ML estimates as �̂ML and �̂
2
ML.

A con�dence interval for �2 can now be obtained by pro�ling the likelihood ratio statis-
tic [7]. Denote �̃ as that value of (6) with wi=1=(�̃2 +�2i ). A 95 per cent con�dence interval
for �2 is then given by the set of �̃2 values satisfying

l(�̃; �̃2)¿l(�̂ML; �̂
2
ML)− 3:84=2

Alternatively, one can base the con�dence interval on the restricted log-likelihood, which
is given by

lR(�2)= − 1
2
∑
ln(�2 + �2i )− 1

2
ln
∑ 1
�2 + �2i

− 1
2
∑ (Yi − �̂)2

�2 + �2i

leaving out additive constants. The restricted maximum-likelihood (REML) estimate of �2 is
obtained by iterating through

�̂2 =
∑
w2i [(Yi − �̂)2 − �2i ]∑

w2i
+

1∑
wi
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until convergence, with �̂ and wi de�ned as before. A negative �2 estimate is again truncated
to zero. Denoting the REML estimate as �̂2REML, a 95 per cent con�dence interval for �

2 is
then given by the set of �̃ values satisfying

lR(�̃2)¿lR(�̂2REML)− 3:84=2
Since the ML and REML estimates of �2 are constrained to be non-negative, the lower

bound of the pro�le likelihood intervals is also always non-negative, while the upper bound
must consequently be positive.

4.3. Wald-type con�dence intervals

The asymptotic sampling variances of the ML and REML estimates of �2 can be obtained by
taking the inverse of the Fisher information and are equal to

Var[�̂2ML]=2(
∑
w2i )

−1 (7)

and

Var[�̂2REML]=2
(∑

w2i − 2
∑
w3i∑
wi
+
(
∑
w2i )

2

(
∑
wi)2

)−1
(8)

respectively. Estimates of the sampling variances are obtained by setting wi=1=(�̂2ML + �
2
i )

and wi=1=(�̂2REML + �
2
i ) in (7) and (8), respectively.

Based on the asymptotic normality assumption of ML and REML estimates, 95 per cent
Wald-type con�dence intervals [16] for �2 are then given by

�̂2ML ± 1:96
√
Var[�̂2ML]

and

�̂2REML ± 1:96
√
Var[�̂2REML]

One can either leave a lower bound that falls below 0 unchanged (which has the advantage
that the interval provides a better indication of the precision of the �2 estimate) or truncate
it to zero (which avoids a bound that falls outside the parameter space). Since the interval is
always constructed around a non-negative �2 estimate, the upper bound must be positive.

4.4. Sidik–Jonkman con�dence intervals

Sidik and Jonkman [15] recently suggested a new heterogeneity estimator and, based on it,
a method for obtaining con�dence intervals for �2. The proposed method works as follows.
First, a rough estimate of �2 is calculated with

�̂20 =
1
k
∑
(Yi − �Y )2

where �Y is the unweighted average of the Yi values. Next, calculate �̂0 with (6), where
wi=1=(�̂20 + �

2
i ). The heterogeneity estimator is then given by

�̂2SH =
�̂20
k − 1

∑
wi(Yi − �̂0)2
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Finally, based on the assumption that (k − 1)�̂2SH=�2 approximately follows a �2 distribution
with k − 1 degrees of freedom, Sidik and Jonkman suggested that a 95 per cent con�dence
interval for �2 can be obtained with(

(k − 1)�̂2SH
�2k−1;0:975

;
(k − 1)�̂2SH
�2k−1;0:025

)

Note that the heterogeneity estimator �̂2SH is always greater than zero. This implies that the
lower and upper bounds of the con�dence interval are also always greater than zero.

4.5. Parametric bootstrap con�dence intervals

Any consistent heterogeneity estimator can be used in conjunction with parametric bootstrap-
ping [24] to obtain con�dence intervals for �2 [18]. Let �̂2 denote the value obtained from
any non-negative and consistent estimator of �2 and �̂ the value of (6) with wi=1=(�̂2 + �2i ).
Then parametric bootstrap con�dence intervals are obtained as follows. Generate k values of Yi
from N(�̂; �̂2 + �2i ). Next, estimate �

2 based on this bootstrap sample and denote the estimate
as �̂2b. Repeat this process b=1; : : : ; B times. A 95 per cent parametric bootstrap interval using
the percentile method [24] is then given by the 2:5th and 97:5th empirical percentiles of the
�̂2b values (which are approximately equal to the (B× 0:025)th and (B× 0:975)th ordered �̂2b
values).

4.6. Non-parametric bootstrap con�dence intervals

Non-parametric bootstrapping [24] can also be applied in this context to obtain con�dence
intervals for �2 [17]. For this, we sample k times with replacement from the Yi and corre-
sponding �2i values and estimate �

2 based on the bootstrap sample. Denoting each bootstrap
estimate as �̂2b, we repeat this process b=1; : : : ; B times. The con�dence interval is then again
given by the 2:5th and 97:5th empirical percentiles of the �̂2b values.
If the heterogeneity estimate used in conjunction with the bootstrapping can yield negative

estimates, then one has the option of either leaving negative estimates unchanged (which
can yield negative con�dence interval bounds) or to truncate them to zero (thereby also
constraining the bounds to be non-negative).

5. EXAMPLE

Consider Table I, which provides the results from 9 clinical trials on the e�ectiveness of
taking diuretics for preventing pre-eclampsia during pregnancy [25] (the data given here were
adapted from References [7, 16]). The log of the odds ratios (Yi) is used as the e�ect size
measure, since its sampling distribution is approximately normally distributed. The estimated
sampling variances of the e�ect size estimates (�̂2i ) are also given in the table. With Q=27:3
(df =8, p¡0:001), there is little doubt that heterogeneity is present in the e�ect sizes.
Table II shows that the ML and REML estimates of �2 are equal to 0.24 and 0.30,

respectively. The fact that the MLE is smaller is not surprising: ML estimates of variance
components are typically negatively biased [26, 27] and the MLE of �2 in the random-e�ects
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Table I. Results for 9 trials on the e�ects of diuretics on pre-eclampsia.

Cases=Total

Study Treated Control Odds ratio Yi �̂2i

1 14=131 14=136 1:04 0:04 0.160
2 21=385 17=134 0:40 −0:92 0.118
3 14=57 24=48 0:33 −1:12 0.178
4 6=38 18=40 0:23 −1:47 0.299
5 12=1011 35=760 0:25 −1:39 0.114
6 138=1370 175=1336 0:74 −0:30 0.015
7 15=506 20=524 0:77 −0:26 0.121
8 6=108 2=103 2:97 1:09 0.686
9 65=153 40=102 1:14 0:14 0.068

Table II. Point estimates and con�dence intervals for �2 for the diuretic and
pre-eclampsia data in Table I.

Method Point estimate Con�dence interval

Q-pro�le �̂2DL = 0:23 (0.07, 2.20)
Biggersta�–Tweedie �̂2DL = 0:23 (0.05, 2.36)
Pro�le likelihood (ML) �̂2ML = 0:24 (0.03, 1.13)
Pro�le likelihood (REML) �̂2REML = 0:30 (0.04, 1.47)
Wald-type (ML) �̂2ML = 0:24 (−0:10, 0.58)
Wald-type (REML) �̂2REML = 0:30 (−0:13, 0.73)
Sidik–Jonkman �̂2SH = 0:46 (0.21, 1.67)
Parametric bootstrap �̂2DL = 0:23 (−0:02, 0.70)
Non-parametric bootstrap �̂2DL = 0:23 (0.03, 0.49)

model is no exception to this rule [28]. The frequently used DerSimonian–Laird estimator [1],
given by

�̂2DL =
Q − (k − 1)∑
wi +

∑
w2i∑
wi

with Q as de�ned in (1) and wi=1=�̂2i , was also calculated and is equal to 0.23. Finally,
estimating �2 with the method suggested by Sidik and Jonkman [15] yields a value of 0.46.
The con�dence intervals obtained with the various methods discussed earlier are also given

in Table II. The DerSimonian–Laird estimator was used for the parametric and non-parametric
bootstrap methods due to its ubiquitous use and ease of calculation. It is quite apparent that
there are some substantial discrepancies between the various methods. Some lower bounds
include the value zero, implying that the e�ect sizes may be homogeneous. On the other hand,
the lower bound falls above zero for other methods, suggesting that heterogeneity is present.
There are also large di�erences with respect to the upper bounds.
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6. PROPERTIES OF CONFIDENCE INTERVALS FOR �2

The large discrepancies observed in the previous example raise the question whether we should
give more credence to the bounds obtained with one of the methods. Based on previous
research and theoretical considerations, it is possible to make some general conjectures about
the accuracy of the various methods. First of all, pro�le likelihood con�dence intervals for
� in the random-e�ects model have been shown to be quite accurate [23]. However, whether
this is also true when constructing intervals for �2 has not been veri�ed. Based on research
in related contexts [29], we may also expect adequate coverage probabilities for �2, with
intervals based on REML estimation possibly having a slight advantage [8, 30]. However,
we can already predict that pro�le likelihood intervals will capture the parameter too often
when �2 = 0 or close to it. Speci�cally, when �2 = 0, then the asymptotic distribution of the
likelihood ratio statistic is not �2 with 1 degree of freedom (as used in the construction of
the intervals), but a 50:50 mixture of a degenerate random variable with all of its probability
mass concentrated at 0 and a �2 random variable with 1 degree of freedom [31, 32]. By
ignoring this fact, we expect to obtain a coverage probability around 97.5 per cent instead of
the nominal 95 per cent when �2 = 0.
Wald-type intervals are not expected to yield adequate coverage probabilities. Based on a

simulation study examining the statistical properties of the Wald test for homogeneity [8],
we can expect the coverage probabilities to be well above the nominal 95 per cent level
when �2 = 0. Although the properties of Wald-type intervals for values of �2¿0 are un-
known at this point, it is generally acknowledged that the normal distribution provides a poor
approximation to the distribution of ML and REML estimates of variance components [29].
The accuracy of the method suggested by Biggersta� and Tweedie [16] depends on how

well the gamma distribution approximates the true distribution of the Q-statistic. When �2 = 0,
then the gamma distribution used in the Biggersta� and Tweedie method simpli�es to a �2

distribution with k − 1 degree of freedom, which is the exact distribution of Q in that case.
Therefore, the coverage probability should be nominal when �2 = 0. However, since the dis-
tribution of Q for �2¿0 is quite complicated, one cannot determine analytically how well the
method works in general (one may suspect that Q then follows a non-central �2 distribution,
but (3) implies that the non-centrality parameter would then have to be (S1 + S2=S1)�2, which
in turn implies that the variance of Q would have to be 2(k − 1) + 4(S1 + S2=S1)�2, but that
result does not match (4)).
As discussed earlier, the lower and upper bounds of the con�dence interval obtained with

the method proposed by Sidik and Jonkman [15] are always greater than zero. Therefore, the
coverage probability of this method must actually be zero when �2 = 0, since the interval can
never capture the parameter in this case. The coverage probability does appear to approach
the nominal value as �2 increases [15], but it is unknown how this method compares to the
other methods in terms of accuracy.
Bootstrap con�dence intervals have been recommended, because their use relaxes certain

distributional assumptions [18]. Speci�cally, the parametric bootstrap intervals do not assume
normally distributed heterogeneity estimates and the non-parametric bootstrap intervals have
the added advantage of not assuming normally distributed e�ect size estimates. However, the
accuracy of these methods in the present context has not been established yet.
The method by Biggersta� and Tweedie [16] relies on the gamma distribution approxima-

tion, which is only exact when �2 = 0. On the other hand, the Q-pro�le method does not
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rely on an approximation at all, since the generalized Q-statistic given in (2) is exactly �2

distributed, assuming the assumptions of the model hold and that the sampling variances are
known constants. Under these conditions, we are guaranteed to obtain con�dence intervals
with nominal coverage probabilities when using this method.
Finally, it should be noted that the pro�le likelihood, Wald-type, and bootstrap intervals are

based on asymptotic results, relying on large k for their nominal performance. On the other
hand, the Q-pro�le, Biggersta�–Tweedie, and Sidik–Jonkman intervals make no assumptions
about the size of k. To what extent this is relevant for practice (i.e. how large is ‘large’?) is
di�cult to say without further analysis.

7. MONTE CARLO SIMULATIONS

All of the proposed methods, except the one suggested by Sidik and Jonkman, require the
use of iterative techniques to obtain the con�dence interval bounds. Consequently, a general
comparison between the various methods either requires some simplifying assumptions or the
use of simulation methods. The latter option was chosen in the present paper. In fact, the
discussion so far has already made use of a simplifying assumption, namely that the sampling
variances of the e�ect size estimates are known. This is only approximately true when the
within-study sample sizes are large (in this case, �̂2i ≈�2i ). On the other hand, when the
within-study sample sizes are small, then the error in the �̂2i values cannot be simply ignored.
Moreover, most e�ect size estimates are not exactly normally distributed, as assumed under
the random-e�ects model (however, the approximation usually becomes more accurate as the
within-study sample sizes increase). In a Monte-Carlo simulation, we can examine how well
the di�erent methods perform when these assumptions do not hold.

7.1. Design

The data were simulated in a manner analogous to the one described by Sidik and Jonkman
[15] and Platt et al. [33], with the log odds ratio as the chosen e�ect size measure. First,
a value of �i was generated from N(�; �2). The size of the control and treatment groups
(ni= nCi = n

T
i ) was then generated from N(n; n=4) rounded to the nearest integer. The number

of cases in the control group (xCi ) was simulated from a binomial (nCi ; p
C
i ) distribution, with

pCi randomly chosen from a uniform distribution on the interval (0:05; 0:65). The number
of cases in the treatment group was obtained from a binomial (nTi ; p

T
i ) distribution, where

pTi =p
C
i exp(�i)={1 − pCi + pCi exp(�i)}. Repeating this process k times, we can generate k

2× 2 tables, where the study speci�c log-odds ratios are given by the �i values and the overall
log odds ratio by �.
The e�ect size estimate in the ith study is equal to the log of the observed odds ratio, namely

Yi= log[{xTi =(nTi − xTi )}={xCi =(nCi − xCi )}]. The sampling variance of Yi can be estimated with
�̂2i =1=(x

T
i +0:5)+1=((n

T
i − xTi )+0:5)+1=(xCi +0:5)+1=((nCi − xCi )+0:5). Adding 1=2 to each

cell avoids complications introduced by cells with a zero count. The distribution of Yi|�i is
approximately normal with mean �i and variance �̂2i [19].
The DerSimonian–Laird estimator [1] was used in conjunction with the two bootstrapping

methods. The number of bootstrap iterations was set to B=1000. Various adjustments to
the standard percentile method (which was described earlier) can be used, most notably the
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so-called BC	 method [24], which can improve the coverage probability of bootstrap intervals
considerably. The accuracy of the standard percentile and the BC	 method was examined in
the simulations.

7.2. Conditions

The following conditions were included in the simulations: k=(10; 20; 30; 50; 80), n=(10; 20;
40; 80; 160), �2 between 0 and 1 in steps of 0.1, and � was set to 0.5. A total of 10 000 iter-
ations were run for each condition. The standard error of the empirical coverage probabilities
was therefore at most 0:005.

7.3. Results

Figures 1 and 2 show the coverage probabilities of the various methods as a function of �2

for selected values of k and n. In particular, values of k and n were chosen to illustrate the
small, medium, and large sample behaviour of the methods. The horizontal dotted line at 0.95
indicates the nominal coverage probability.
The Q-pro�le method yielded the most accurate coverage probabilities, closely followed by

the method suggested by Biggersta� and Tweedie. In fact, the coverage probabilities of the two
methods were identical when �2 = 0, but did diverge slightly as the amount of heterogeneity
increased. The di�erence between the two methods was most notable when k was large. Here,
the Biggersta�–Tweedie method yielded coverage probabilities that fell below the nominal
level as �2 increased. As Figure 2 shows, the coverage probabilities of the Q-pro�le method
also departed somewhat from the nominal level in the k=80, n=10 case (i.e. for large-scale
meta-analyses with very small studies) when �2 was large. However, this is a rather unlikely
condition to be encountered in practice and the alternative methods fared even worse in
this case.
As expected, the coverage probabilities of the pro�le likelihood intervals were too high

when �2 was equal to or close to zero. As �2 increased, the coverage probabilities approached
the nominal level as long as n=k¿1. On the other hand, a meta-analysis of a large number of
studies with small sample sizes yields coverage probabilities that deviate quite substantially
from the nominal level. Finally, it is worthwhile to note that the REML-based pro�le intervals
were slightly more accurate, especially for small k.
The performance of the Wald-type intervals was unsatisfactory, with close to or exactly 100

per cent coverage when the e�ect sizes were homogeneous and coverage probabilities sub-
stantially below the nominal level for larger values of �2. Only when k and n are both very
large do the coverage probabilities begin to approach the nominal level.
The Sidik–Jonkman method also yielded unacceptable coverage probabilities. For values

of �2 close to zero, this was to be expected for reasons outlined earlier. However, the coverage
probabilities were still too small, often substantially so, even when �2 was large.
Finally, the bootstrapping methods yielded coverage probabilities that were also less than

adequate. The BC	 method did help to improve the accuracy of the bootstrapping methods
and these are the results shown in Figure 2, but the coverage probabilities were still usually
too low when using non-parametric bootstrapping and, depending on the value of �2, above
(for small �2) or below (for large �2) the nominal level when using parametric bootstrapping.
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8. CONCLUSIONS

Meta-analysts have clearly recognized that an estimate of the overall e�ect size should be
accompanied by a con�dence interval to indicate the precision with which the overall e�ect
size has been estimated. The accuracy of various methods for calculating con�dence intervals
for the overall e�ect size has also been examined in previous research [23, 34, 35]. On the
other hand, reporting of con�dence intervals for the amount of heterogeneity still appears to
be relatively uncommon. And although a large number of methods for obtaining con�dence
intervals for the amount of heterogeneity has been suggested in the literature, no systematic
comparison between the various methods had been conducted so far.
The present results reveal some notable di�erences in the accuracy of the various methods

and suggest that some methods are preferable over others. Speci�cally, the newly proposed
Q-pro�le method yielded the most accurate coverage probabilities of all the methods con-
sidered. In fact, assuming that the assumptions of the random-e�ects model are satis�ed
(including the assumption of normally distributed e�ect size estimates and known sampling
variances), the method guarantees nominal coverage levels. There are cases where tighter in-
tervals can be obtained with the other methods (cf. Table II), but this may also come at a
loss of coverage accuracy, sometimes drastically so.
An added advantage of the Q-pro�le method is its simplicity. The only method with a

closed-form solution for the interval bounds was the one suggested by Sidik and Jonkman [15],
but this method generally yielded unsatisfactory results. While all other methods require
iterative procedures, the iterative scheme for the Q-pro�le method could even be applied
with a pocket calculator. One simply has to increase �2 until one �nds those two values of �2

where Q(�2) equals the appropriate lower and upper bounds of a �2 distribution with k − 1
degrees of freedom. An R=S-Plus function to obtain Q-pro�le con�dence intervals has also
been made available at the author’s website at http:==www.wvbauer.com=.
Finally, it may be useful to elaborate a bit more on how a con�dence interval for �2 may

be used in a meta-analysis. First of all, a con�dence interval for the amount of heterogene-
ity allows researchers to assess the precision of the corresponding point estimate. Reporting
con�dence intervals for the amount of heterogeneity would also highlight an aspect of meta-
analysis that may have remained somewhat underappreciated. The width of such intervals is
often quite large, indicating that �2 is estimated with little precision. This, in turn, underscores
the need for sensitivity analyses, to show, for example, how the con�dence interval for the
overall e�ect size (�) can change substantially in width as �2 changes.
For example, consider Figure 3, which shows the overall e�ect size estimated with (6) as

a function of �2 for the diuretic and pre-eclampsia data in Table I. Dashed lines indicate the
lower and upper bounds of the corresponding 95 per cent con�dence interval for �, typically
calculated with

�̂ ± 1:96
√
1=
∑
wi

where wi=1=(�̂2 + �̂2i ). Finally, vertical dotted lines are drawn at the lower and upper
bounds of the con�dence interval for �2 as obtained with the Q-pro�le method (�̂2 = 0:07
and �̂2 = 2:20, respectively) and at �̂2DL =0:23, the DerSimonian–Laird estimate of the amount
of heterogeneity.
Several things are to be noted about this �gure. First of all, as has been shown before [7],

the estimate of the overall e�ect is relatively insensitive to changes in �2. On the other hand,
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Figure 3. Overall e�ect size estimate (solid line) and corresponding 95 per cent con�dence interval
bounds (dashed lines) as a function of �2 for the diuretic and pre-eclampsia data (the vertical dotted
lines indicate the lower and upper bounds of a 95 per cent con�dence interval for �2 obtained with
the Q-pro�le method and the point estimate of �2 obtained with the DerSimonian–Laird estimator).

the width of the con�dence interval for � increases considerably as a function of �2. Finally,
given the imprecision in the estimate of �2, we may be severely overstating the precision of
the estimated overall e�ect size. Con�dence intervals for �2 could facilitate such sensitivity
analyses by suggesting a possible range of �2 values one should consider.
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