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The meta-analytic random effects model assumes that the variability in effect size
estimates drawn from a set of studies can be decomposed into two parts: hetero-
geneity due to random population effects and sampling variance. In this context,
the usual goal is to estimate the central tendency and the amount of heterogene-
ity in the population effect sizes. The amount of heterogeneity in a set of effect
sizes has implications regarding the interpretation of the meta-analytic findings
and often serves as an indicator for the presence of potential moderator variables.
Five population heterogeneity estimators were compared in this article analyti-
cally and via Monte Carlo simulations with respect to their bias and efficiency.
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1. Introduction

Although the roots of meta-analytic methodology reach back further in time
than the conception of the term “meta-analysis” itself (Chalmers, Hedges, &
Cooper, 2002; Glass, 1976), most of the research conducted in developing this
technique has taken place during the last two decades. Compared to other statisti-
cal methods, we may, therefore, consider meta-analysis to be a relatively recent
development. However, spurred by the information explosion in the scientific lit-
erature (Adair & Vohra, 2003), researchers have been eager to put forth various
methods for aggregating the results from studies that provide commensurable evi-
dence about a particular measurable effect (Bangert-Drowns, 1986). Much work
still remains to be done in determining which of the proposed methods, if any, pro-
vides unbiased and efficient estimates of the effects, which researchers are trying
to measure when conducting a meta-analysis.

Which parameters are going to be estimated depends on the statistical model
adopted for the analysis. There seems to be a growing consensus that the random-
and mixed-effects models should be preferred over the decidedly more simple
fixed-effects model (Erez, Bloom, & Wells, 1996; Hunter & Schmidt, 2000; National
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Research Council, 1992). The meta-analytic random-effects model assumes that
the variability in effect size estimates drawn from a set of studies can be decom-
posed into two parts: heterogeneity due to random population effects and sampling
variance. In this context, the primary goal is to estimate the central tendency and
the amount of heterogeneity in the population effect sizes. Various estimators for the
amount of heterogeneity in the population effect sizes have been suggested, but, aside
from a few notable exceptions (e.g., Friedman, 2000), little work has been done to
compare and contrast the statistical properties of these estimators directly. The pre-
sent article attempts to expand on what is known about these variance estimators and
in particular, to determine whether one should be preferred over the others.

The general outline of this article is as follows. In the second section, I briefly
outline the random-effects model in meta-analysis and emphasize the need for a
careful analysis of the various estimators for the amount of heterogeneity in the
population effect sizes. Next, formulas for five variance estimators, their bias, and
sampling variances are given. In particular, the estimators include one suggested
by Hunter and Schmidt (1990) from the validity generalization literature, one pro-
posed by Hedges (1983, 1989), an estimator by DerSimonian and Laird (1986), the
maximum likelihood estimator, and the restricted maximum likelihood estimator.
Two illustrative examples in section 4 demonstrate that the estimators can yield
noticeably divergent results. Analytic comparisons between the estimators in terms
of their sampling variance and mean squared error are given in section 5. Further-
more, the bias in the estimators due to truncation of negative estimates is discussed.
However, the analytic comparisons require some restrictive assumptions, which
might not hold in practice. The sixth section, therefore, presents the results from
Monte Carlo simulations that were conducted to complement the analytic results.
Some final remarks conclude the article.

2. The Random-Effects Model in Meta-Analysis

Assume that i = 1, . . . , k independent effect size estimates, ES1, . . . , ESk, have
been derived from a set of studies. The random-effects model assumes that each
effect size estimate can be decomposed into two variance components by a two-
stage hierarchical process. We assume that θi, the population effect size in the ith
study, is drawn from a distribution of population effect sizes with mean µθ and
variance σ2

θ. The size of σ2
θ indicates the degree of heterogeneity in the population

effect sizes, whereas µθ describes their central tendency. Let τi represent an error
term by which the population effect size in the ith study differs from µθ. Further-
more, let �i represent an error term by which ESi differs from θi. Then we can write
the random-effects model as

ESi = θi + �i = µθ + τi + �i. (1)

The assumptions of the meta-analytic random-effects model are: (a) �i ∼ N(0, σ2
�i),

(b) τi
iid∼ N(0, σ2

θ), (c) Cov[�i, �j] = 0 for i ≠ j, and (d) Cov[�i, τj] = 0 for all i and j. It
follows from these assumptions that ESi ∼ N(µθ, σ2

θ + σ2
�i). The goal in this context
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is to estimate µθ and σ2
θ in an optimal manner. Criteria for optimality include the

(un)biasedness and efficiency, and more generally, the mean squared error (MSE)
of the estimators for these parameters.

The Cramer–Rao lower bounds of unbiased estimators for µθ and σ2
θ are

and

respectively. Estimators for µθ are usually of the form

where mi are weights assigned to each of the effect sizes. For mi = 1/(σ2
θ + σ2

�i), we
note that Var[

—
ES] achieves the Cramer–Rao lower bound and, therefore, is the uni-

formly minimum variance unbiased estimator (UMVUE) of µθ (Viechtbauer, 2002).
However, in practice, estimates must be substituted into mi for the unknown

parameters σ2
θ and σ2

�i. For many commonly used effect size measures, it is possi-
ble to calculate unbiased estimates of the σ2

�i values from little more than the
observed effect sizes and knowledge about the sample sizes on which the observed
effect sizes are based. The usual practice is to treat such estimates as the true σ2

�i

values and to ignore any associated sampling error. Furthermore, as shown below,
an unbiased estimate of σ2

θ can also be obtained without too much difficulty. Again,
the sampling variance of such an estimate is usually ignored.

The consequence of calculating the mi values using estimates of σ2
�i and σ2

θ is as
follows. Let σ̂2

θ and σ̂2
�i be unbiased estimates of the corresponding parameters.

After extending the results by Li, Shi, and Roth (1994), it can be shown that

In other words, substituting unbiased estimates of σ2
θ and σ2

�i into mi results in an
estimate of the sampling variance of

—
ES that is negatively biased. As a consequence

of this negative bias, the sampling variance of
—
ES will be underestimated on aver-

age, and researchers will attribute unwarranted precision to their estimate of µθ.
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Using estimates of σ2
θ and σ2

�i with small sampling variance should reduce the extent
of the negative bias. Therefore, if one has the option of choosing among several
reasonable estimators of σ2

θ and σ2
�i, it would be valuable to know which of them

have small sampling variance. The current article focuses in particular on estima-
tors of σ2

θ. Future work could address the efficiency of σ2
�i estimates for various

effect size measures.
A second point to consider is the fact that the sampling variance of

—
ES is an

increasing function of σ2
θ. Consequently, the sampling variance of

—
ES will be under-

estimated on average when using a negatively biased estimator of σ2
θ. On the other

hand, positive bias in σ2
θ will lead researchers to understate the accuracy of their

estimate of µθ. Also, the parameter σ2
θ is of interest not only for calculating

—
ES and

its sampling variance, but also because it directly indicates any heterogeneity in
the effect sizes that cannot be accounted for by sampling error in the effect size
estimates alone. In fact, σ2

θ > 0 can result from (a) heterogeneous population effect
sizes as described by the random-effects model, (b) differences in the population
effect sizes due to the presence of moderator variables, or (c) a combination of ran-
dom population effect sizes and moderator effects. Proper handling of the latter
two cases requires modeling of moderator variables effects and leads, respectively,
to the fixed-effects model with moderators and the mixed-effects model (Viecht-
bauer, 2002). Modeling of moderator effects is not discussed in the present article,
but the interested reader should consult, for example, Hedges (1994), Overton
(1998), and Raudenbush (1994).

Suffice it to say, any heterogeneity in the population effect sizes, whether caused
by moderator effects or random variation, will be reflected in estimates of σ2

θ being
greater than zero. On the other hand, estimates of σ2

θ equal to zero are usually inter-
preted as indicating the absence of moderators and random variation within the
population effects, in which case, the random-effects model reduces to the simple
fixed-effects model (estimates of σ2

θ smaller than zero are usually truncated to
zero). In that case, µθ no longer represents the central tendency of the population
effects, but rather a fixed population effect size θ that all k effect sizes estimate
jointly. Therefore, choice and interpretation of the appropriate model is influenced
to a large extent by the estimate of σ2

θ. In fact, Hunter and Schmidt (1990) advise
against the use of statistical hypothesis tests to determine the homogeneity of effect
sizes (which would rule out moderator effects and population heterogeneity) and
instead favor a critical examination of σ2

θ estimates in terms of their magnitude.
Consequently, the effects of bias in estimates of σ2

θ can either lead researchers
to search for and discover moderators that do not really exist or lead researchers to
ignore the presence of actual moderator effects. This is of particular concern now
because researchers are becoming increasingly aware of the fact that detection and
estimation of moderator effects is often the most valuable contribution of meta-
analysis to the research domains in which it is applied. Because estimates of σ2

θ

play such a crucial role in meta-analysis, the bias and efficiency of σ2
θ estimators

must be considered in this context as well. More confidence can be placed in (un-
biased) estimators of σ2

θ with smaller sampling variance because they will reflect,
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on average, more accurately the true value of the amount of heterogeneity in the
population effect sizes.

In summary, then, it is worthwhile to examine the statistical properties of the
various population heterogeneity estimators because (a) using efficient estimators
of σ2

θ reduces the possibility that we overestimate the precision of
—
ES, (b) using

biased estimators of σ2
θ leads to over or underestimation of the precision of

—
ES, and

(c) estimates of σ2
θ are relevant for model choice and moderator analysis. Finally,

as is demonstrated in section 4 with two examples, the estimators can yield diver-
gent or even conflicting results.

3. Heterogeneity Estimators in the Random-Effects Model

In this section, five population heterogeneity estimators are introduced, includ-
ing a commonly used estimator in validity generalization research, which can be
attributed to Hunter and Schmidt (1990), an estimator proposed by Hedges (1983,
1989), an estimator by DerSimonian and Laird (1986), and two estimators based
on maximum likelihood estimation, the regular maximum likelihood estimator and
the restricted maximum likelihood estimator.

3.1. Hunter–Schmidt Estimator

The Hunter–Schmidt (HS) estimator is given by

where the wi values are weights that do not have to coincide with the mi weights
used to calculate 

—
ES as defined in Equation 4. However, setting wi = mi is the usual

practice and will be assumed from now on. Because σ2
θ is unknown, it is not pos-

sible to use the optimal wi = 1/(σ2
θ + σ2

�i) weights in Equation 6. Instead, wi and mi

are initially set equal to (a) the fixed-effects model weights, namely, 1/σ2
�i; (b) the

sample size on which the ith effect size is based (as an approximation to 1/σ2
�i); or

(c) unity, which would provide an unweighted estimate of σ2
θ. Once σ̂2(HS )

θ has
been obtained, a final estimate of µθ is calculated using the approximately optimal
weights for 

—
ES, namely wi = 1/(σ̂2(HS)

θ + σ̂2
�i).

However, the estimator given by Equation 6 has been shown to be negatively
biased (Viechtbauer, 2002). The bias is equal to

which increases for larger σ2
θ and tends to decrease as k → ∞ for bounded values

of (σ2
θ + σ2

�i). For homogeneous sampling variances and weights, the bias will be
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equal to −(σ2
θ + σ2

�)/k, where σ2
� denotes the common sampling variance of the k

effect sizes. When k is small, this could potentially lead to substantial underesti-
mation of the population heterogeneity.

The sampling variance of σ̂2(HS)
θ is obtained by writing Σwi(ESi − —

ES)2 as a qua-
dratic form (Viechtbauer, 2002) and then using a known theorem in linear alge-
bra (Searle, 1971, p. 55) to derive the variance thereof. After some tedious
algebra, we find that

where vi = (σ2
θ + σ2

�i). The bias and the variance of σ̂2(HS)
θ go to zero as k → ∞ for

bounded values of vi and, consequently we can conclude that the HS estimator is
consistent. For the common case of wi = 1/σ2

�i, we can write Equation 8 as

where

Because using inverse sampling variance weights, or an approximation thereof, is
the most common practice when calculating the HS estimator, any subsequent ref-
erence to this estimator assumes the use of such weights.

3.2. Hedges Estimator

Let  
—
ES be the unweighted average of the ESi values. Then an unbiased estimate

of σ2
θ is given by

The Hedges (HE) estimator is unbiased not only when the exact sampling vari-
ances are known, but also when substituting unbiased estimates for the σ2

�i values
in Equation 11.
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The sampling variance of the HE estimator is equal to

Again, the variance of the estimator decreases to zero as k → ∞ and, therefore,
σ̂2(HE)

θ is consistent. Friedman (2000) showed that Equation 12 can be written as

3.3. DerSimonian–Laird Estimator

DerSimonian and Laird (1986) suggested the estimator

with c as defined in Equation 10 and wi = mi = 1/σ2
�i. The DerSimonian–Laird (DL)

estimator is unbiased under the assumption that the σ2
�i values are known.

The sampling variance of  σ̂2(DL)
θ is equal to

The DL estimator is also consistent. Friedman (2000) showed that Equation 15 can
be written as

3.4. Maximum-Likelihood Estimator

The random-effects model given by Equation 1 is just a special case of the
general linear mixed-effects model (GLMM) of the form

y = X� + Z� + e,
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where y is a (k × 1) vector of random variables, X is a (k × p) matrix of known con-
stants for the (p × 1) fixed effects parameter vector �, Z is the (k × q) design matrix
for the (q × 1) random effects parameter vector �, and e is a (k × 1) vector of ran-
dom error terms. We assume E[�] = 0, E[e] = 0, and Cov[�, e] = 0. Define D as the
(q × q) covariance matrix of the random effects parameters in � and R as the (k × k)
covariance matrix of e. Then V, the (k × k) covariance matrix of y, is equal to ZDZ�
+ R. After assuming normality of the random terms in the model, we obtain y ∼
N(X�, V). Denoting the variance components in V by the vector �2, we can write
the log-likelihood function of � and �2 as

leaving out the additive constant.
For the meta-analytic random-effects model, y consists of the k effect size esti-

mates, X is a (k × 1) vector composed entirely of 1s, � includes only the grand mean
µθ, Z is the (k × k) identity matrix, � is comprised of the τi values at the population
level, and e includes the random error terms, �1, . . . , �k. Then V is diagonal with 
vi = (σ2

θ + σ2
�i) and y ∼ N(1µθ, V).

Treating the sampling variances as known, the log-likelihood function of µθ and
σ2

θ therefore simplifies to

Setting partial derivatives with respect to µθ and σ2
θ equal to zero and solving the

likelihood equations for the two parameter to be estimated, we obtain Equation 4
as µ̂(ML)

θ and

with wi = mi = 1/(σ2
θ + σ2

�i).
Solutions to these equations are obtained by iterating between µ̂(ML)

θ and σ̂2(ML)
θ ,

starting either with an initial guess for σ̂2(ML)
θ (such as given by any of the noniter-

ative methods) or setting σ̂2(ML)
θ = 0 (Erez, Bloom, & Wells, 1996; National

Research Council, 1992). This process continues until the parameter estimates do
not change from one iteration to the next. Convergence usually occurs rapidly
within less than ten iterations (Erez et al., 1996).

Occasionally, choice of particular effect size measures imposes constraints on
the parameter space of µθ. Moreover, σ2

θ is constrained to be non-negative in all
cases. When the solutions converge to values outside the parameter space, then one
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should check whether a maximum of the log-likelihood function occurs at the
boundaries of the parameter space. Solutions inside the parameter space should be
evaluated at  µ̂(ML)

θ and σ̂2(ML)
θ via the Hessian matrix, given by

to ensure that the determinant of H is positive.

3.5. Restricted Maximum Likelihood Estimator

The maximum likelihood estimator of σ2
θ tends to underestimate the population

heterogeneity in finite samples by failing to account for the fact that µθ in Equa-
tion 17 is also estimated from the data. In fact, maximum likelihood estimates of
variance components are known to be negatively biased in many cases (Patterson
& Thompson, 1974; Corbeil & Searle, 1976). The restricted maximum likelihood
(REML) estimator compensates for this underestimation by using a linear combi-
nation of the y vector, so that the transformed data are free of the fixed effects in
�. Specifically, let M be equal to (k − 1) linearly independent columns of I −
X(X′X)−1X′. Then M′ y is independent of � in the sense that M′ y ∼ N(0, M′VM).
In fact, we can take any matrix M of full rank, as long as M′ X = 0. Then the log-
likelihood function to be maximized is given by

where 
~
� is a maximum likelihood solution of � for fixed �2 (Harville, 1977). This

simplifies to

for the meta-analytic random-effects model. The REML estimator of σ2
θ is then

given by

and is obtained in the same iterative manner as described for the regular maximum
likelihood estimator.

Restricted maximum likelihood estimation does not yield estimates of the fixed
effects. However, as suggested by Searle, Casella, and McCulloch (1992), it seems
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reasonable to evaluate the regular maximum likelihood estimates of the fixed effects
parameters using the REML variance component estimates. In fact, finding a solu-
tion for Equation 18 requires that we obtain exactly this type of estimate as part of
the iteration procedure, which we now define as the REML estimator of µθ. 

The restricted maximum likelihood estimator has frequently been defined as

in the literature (Berkey, Hoaglin, Mosteller, & Colditz, 1995; Normand, 1999;
Thompson & Sharp, 1999). It appears that Equation 19 originated with Morris
(1983), who suggested it as an “approximate” REML estimate (p. 53). When the
sampling variance are homogeneous (i.e., σ2

�i = σ2
�, ∀i = 1, . . . , k), then the approx-

imation given by Equation 19 and the exact REML estimate given by Equation 18
are equal to each other, but this is rare in practice, and, therefore, Equation 18
should be preferred.

According to the usual principles of maximum likelihood estimation, the regu-
lar MLEs of µθ and σ2

θ are expected to be consistent and asymptotically fully effi-
cient. From the information matrix of µθ and σ2

θ, we can obtain the asymptotic
sampling variances. For the maximum likelihood estimates, they are given by

and

Not surprisingly, these are of the same form as the Cramer–Rao lower bounds for
µθ and σ2

θ (see Equations 2 and 3). On the other hand, the asymptotic sampling vari-
ance of σ̂2 (REML)

θ is

which can be shown to be greater than Var∞ [σ̂2 (ML)
θ ]. Consequently, the restricted

maximum likelihood estimator is less efficient than the regular maximum likeli-
hood estimator in finite samples. Estimates of these sampling variances are obtained
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by evaluating the equations with the corresponding estimates of σ2
θ, namely, by set-

ting wi to 1/(σ̂2 (ML)
θ + σ̂2

�i) and 1/(σ̂2 (REML)
θ + σ̂2

�i), respectively.
Occasionally, it is possible that the ML or REML estimator will converge to −σ2

�i

for one of the σ2
�i values. Then wi = 1/(σ2

θ + σ2
�i) is undefined, and the iteration proce-

dure breaks down. Such negative variance estimates lie outside the parameter space
and are usually truncated to zero. Also, occasionally, the iterative estimation proce-
dures will not converge and instead continue cycling between several values of σ̂2

θ.
This seems more likely to happen when k is small. Usually, the cycle is confined to
two values, but higher cycles also occur. In this case, one can employ a direct max-
imization technique without derivatives, such as the algorithms suggested by Nelder
and Mead (1965) and by Byrd, Lu, Nocedal, and Zhu (1995). Constraints on the
parameter space of µθ can also be incorporated into these optimization procedures.

4. Examples

The two examples in the present section help to illustrate that the five estimators
can provide noticeably divergent or conflicting estimates. The first data set, given
in Table 1, provides the results for k = 10 studies that examined the effectiveness of
open versus traditional education programs on student creativity (Hedges & Olkin,
1985, p. 25). The table lists the effect size ESi, the estimated sampling variance σ̂2

�i,
and the inverse sampling variance weight wi = 1/σ̂2

�i for each study.
When using the HS estimator, σ2

θ is estimated to be equal to 0.23, while the HE and
DL estimators yield the values 0.15 and 0.28, respectively. These calculations can be
easily verified with a pocket calculator. The ML estimate converges quickly to 0.20
within seven iterations when the stopping criterion is taken to be a change in σ̂2 (ML)

θ less
than 10−5 from one iteration to the next. On the other hand, the REML estimator con-
verges within five iterations to the value 0.22. Clearly, these five estimates are far
from being unanimous, although they all indicate substantial heterogeneity in the
effect sizes over and beyond what one would expect based on sampling error alone.
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TABLE 1
Results for 10 Studies of the Effectiveness of Open Versus Traditional Education on
Student Creativity

Study Effect Size (ESi) Variance (σ̂2
�i) Weight (wi = 1/σ̂2

�i)

1 −0.581 0.023 43.478
2 0.530 0.052 19.231
3 0.771 0.060 16.667
4 1.031 0.115 8.696
5 0.553 0.095 10.526
6 0.295 0.203 4.926
7 0.078 0.200 5.000
8 0.573 0.211 4.739
9 −0.176 0.051 19.608

10 −0.232 0.040 25.000

Source: Hedges and Olkin (1985), p. 25.



In the first example, there is disagreement among the estimators with respect to
the extent of the heterogeneity. However, even more problematic are cases where the
amount of population heterogeneity is estimated to be equal to zero (or negative)
with some of the estimators and positive with others. Consider Table 2, which pro-
vides results for k = 18 studies comparing open versus traditional education using
student self-concept as the outcome variable (Hedges & Olkin, 1985, p. 25).

For the most part, the estimators yield similar results, namely 0.010 for the HS
estimator, 0.013 when using the DL or ML estimator, and 0.016 with the REML
estimator. The ML and REML estimators again converge quickly in less than five
iterations. Each of these four values indicates a modest amount of population hetero-
geneity. However, when using the HE estimator, we obtain an estimate of σ2

θ equal to
−0.002, which would indicate the absence of any variability in the population effects.

5. Analytic Comparisons of the Estimators

The fact that the various estimators can lead to divergent or conflicting results
immediately raises the question whether one should be preferred over the others.
In the remainder of the article, I attempt to address this particular question. How-
ever, before giving some general results about the estimators, it is instructive to
consider three special cases. In particular, I examine the behavior of the estimators
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TABLE 2
Results for 18 Studies of the Effectiveness of Open Versus Traditional Education on
Student Self-Concept

Study Effect Size (ESi) Variance (σ̂2
�i) Weight (wi = 1/σ̂2

�i)

1 −0.581 0.023 43.478
1 0.100 0.016 62.500
2 −0.162 0.015 66.667
3 −0.090 0.050 20.000
4 −0.049 0.050 20.000
5 −0.046 0.032 31.250
6 −0.010 0.052 19.231
7 −0.431 0.036 27.778
8 −0.261 0.024 41.667
9 0.134 0.034 29.412

10 0.019 0.033 30.303
11 0.175 0.031 32.258
12 0.056 0.034 29.412
13 0.045 0.039 25.641
14 0.103 0.167 5.988
15 0.121 0.134 7.463
16 −0.482 0.096 10.417
17 0.290 0.016 62.500
18 0.342 0.035 28.571

Source: Hedges and Olkin (1985), p. 25.

Wolfgang
Line



(a) when the sampling variances are homogeneous, (b) when the sample sizes on
which the effect sizes are based become very large, and (c) when the population
heterogeneity is zero.

5.1. Homogeneous Sampling Variances

When the sampling variances of the k effect sizes are homogeneous, we obtain
the notable result that

and

where  
—
ES is the unweighted average of the effect size estimates and σ2

� denotes the
common sampling variance of the effect sizes.

Therefore, σ̂2 (ML)
θ , like the HS estimator, is negatively biased for finite k. On the

other hand, σ̂2 (REML)
θ is unbiased. These results do not come as a surprise, as maxi-

mum likelihood estimates of variance components often exhibit negative bias
(Corbeil & Searle, 1976; Patterson & Thompson, 1974) and in fact, restricted
maximum-likelihood estimation was suggested as a means for reducing or elimi-
nating the bias in the ML estimates.

The sampling variances of the estimators simplify to

and

Moreover, the Cramer–Rao lower bound of unbiased σ2
θ estimators is now equal to

(2/k)(σ2
θ + σ2

� )2, and we can conclude that: (a) the HS and ML estimators approach
the Cramer–Rao lower bound from below, (b) the HE, DL, and REML estimators
approach the bound from above; and (c) the estimators are asymptotically fully
efficient. Note that σ̂2 (HS)

θ and σ̂2 (ML)
θ might actually have sampling variances that fall

below the Cramer–Rao lower bound, which is a consequence of the bias in these
estimators. Finally, from commonly known results (Lehmann & Casella, 1998),
we can infer that the HE, DL, and REML estimators are the UMVUE of σ2

θ when
the sampling variances are known and homogeneous.
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The MSE of σ̂2(HS/ML)
θ is now given by

while the MSE of σ̂2
θ is equal to Equation 21, as these three estimators

are unbiased. The relative efficiency of the HS and ML estimators compared to the
HE, DL, and REML estimators is given by ((k − 1)/k)2, which approaches 1 as k
increases. However, as Table 3 shows, for small to moderately large values of k,
differences in the relative efficiency are quite noticeable. The relative MSE is given
by (2k − 1)(k − 1)/(2k2), which also approaches 1 for increasing k. As Table 3
demonstrates, the HS and ML estimators have lower MSE than the three unbiased
estimators. In other words, these results indicate that

and

Finally, it should be mentioned that we can again infer from commonly known
results (Lehmann & Casella, 1998) that the HS and ML estimators do not mini-
mize the MSE. Instead, the estimator  ̂σ2

θ = (1/(k + 1)) ∑ (ESi − —
ES)2 − σ2

� dominates
the HS and ML estimators in terms of MSE for all values of σ2

θ when the sampling
variances are known and homogeneous.

5.2. Infinite Sample Sizes

If we keep k fixed and let the sample sizes on which the ESi values are based
go to infinity, then σ2

�i → 0 for i = 1, . . . , k. In other words, if we imagine each
study having infinite sample size, then no sampling error remains in the effect size
estimates. In that case, σ̂2 (HE)

θ and σ̂2 (REML)
θ are simply equal to ∑(ESi − —

ES)2/(k − 1),
the UMVUE of the variance in the effect sizes. On the other hand, σ̂2 (ML)

θ simpli-

MSE MSEHS ML HE DL REMLˆ ˆ . ( )σ σθ θ
2 2 23( ) ( )[ ] < [ ]

Var Varˆ ˆ ( )σ σθ θ
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(HE/DL/REML)

TABLE 3
Relative Efficiency and MSE of the HS and ML Estimators Compared with the DL, HE,
and REML Estimators of σ2

θ Assuming Homogeneous Sampling Variances

Number of Effect Sizes (k)

Parameter 5 10 20 40 80

Relative efficiency 0.64 0.81 0.90 0.95 0.98
Relative MSE 0.72 0.86 0.93 0.96 0.98



fies to ∑(ESi − —
ES)2/k, the typical maximum likelihood estimate of the variance.

Therefore,

and

On the other hand, when σ2
�i = 0 for any one of the effect sizes, both the HS and

DL estimators and their sampling variances are undefined. However, if we let σ2
�i

get arbitrarily close to 0 for all k effect sizes, then lower bounds of Var[σ̂2 (HS)
θ ] and

Var[σ̂2 (DL)
θ ] are given by Equations 24 and 25, respectively, but these lower bounds

are never actually quite reached, even as k becomes large. In fact, the relative effi-
ciency of the HE and REML estimators compared to the DL estimator will con-
sistently fall slightly below 1, no matter how large k becomes. The same applies to
the relative efficiency of the ML estimator when compared to the HS estimator.

From these results, and the fact that the Cramer–Rao lower bound is equal to (2/k)σ4
θ

when the sampling variances are zero, we can conclude that: (a) Var[σ̂2
θ

(HE/REML)]
and Var[σ̂2 (DL)

θ ] exceed the Cramer–Rao lower bound and consequently, the HE, DL,
and REML estimators are less than fully efficient for finite k, even when the σ2

�i val-
ues become arbitrarily close to zero; (b) for large k, the HE, ML, and REML esti-
mators are fully efficient; and (c) the HS and DL estimators are not fully efficient
even as k becomes large.

5.3. Homogeneous Population Effect Sizes

When the population effect sizes are homogeneous, then σ2
θ = 0. The sampling

variances and MSEs of the three noniterative estimators then simplify to
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where wi = 1/σ2
�i. The Cramer–Rao lower bound of σ2

θ is now equal to 2/∑w2
i. It is

easy to show that Var[σ̂2 (HS)
θ ] can be smaller than 2/∑w2

i, which again illustrates that
the sampling variance of the HS estimator can actually fall below the Cramer–Rao
lower bound of unbiased estimators. On the other hand, Var[σ̂2 (HE)

θ ] and Var[σ̂2 (DL)
θ ]

are always greater than the Cramer–Rao lower bound for finite k. Finally, it can be
shown that

and

5.4. General Results for the Noniterative Estimators

From Equations 13 and 16, we see that Var[σ̂2 (DL)
θ ] − Var[σ̂2 (HE)

θ ] can be written
as a quadratic equation of the form A(σ2

θ)2 + B(σ2
θ) + C. By determining that B and

C are nonpositive and A non-negative, Friedman (2000) showed that the DL esti-
mator is more efficient for smaller values of σ2

θ, while the HE estimator will be
more efficient when the amount of heterogeneity becomes large. Because both of
these estimators are unbiased, the same conclusion applies to the MSE. Friedman’s
results are now extended to include the HS estimator.

From Equations 8 and 15, we see that Var[σ̂2 (HS)
θ ] and Var[σ̂2 (DL)

θ ] only differ by
a multiplicative term. Moreover, it is easy to prove that 1/c2 > 1/(∑wi)2 and, there-
fore, the HS estimator always has smaller sampling variance than the DL estimator.

A comparison between the HE and the HS estimator reveals results that are not
as unequivocal. From Equation 9, we see that Var[σ̂2 (HS)

θ ] − Var[σ̂2 (HE)
θ ] is also of

the form A(σ2
θ)2 + B(σ2

θ) + C. It can be shown that C and B are nonpositive. How-
ever A can take on positive or negative values, depending on k and the wi values.
When the sampling variances are homogeneous, A is always negative, which
implies that the HS estimator is more efficient than the HE estimator (see also sec-
tion 5.1). As the sampling variances become increasingly heterogeneous, A even-
tually becomes positive and will do so more rapidly for larger k. When A is
positive, then the HS estimator is more efficient for smaller values of σ2

θ, while the
HE estimator is more efficient for larger values of σ2

θ.
The MSE of the HS estimator is also a quadratic equation in σ2

θ. Comparing the
MSE of the HS and the DL estimators reveals that C and B are always nonpositive.
The value of A is also always nonpositive for homogeneous sampling variances
(see section 5.1). Without this assumption, A will remain to be nonpositive, except
under some unusual circumstances. In particular, when the wi values are relatively
homogeneous except for one comparatively large value, then A can become posi-
tive. In other words, A might become positive when the sample sizes of the studies
on which the effect sizes are based are roughly homogeneous except for one study
with a very large sample size. In this case, the MSE of the HS estimator might

MSE MSE MSEHS DL HEˆ ˆ ˆ .σ σ σθ θ θ
2 2 2( ) ( ) ( )[ ] < [ ] < [ ]

Var Var Varˆ ˆ ˆσ σ σθ θ θ
2 2 2HS DL HE( ) ( ) ( )[ ] < [ ] < [ ]



exceed that of the DL estimator. However, in most other cases, the HS estimator
will have smaller MSE.

When comparing the MSE of the HE estimator with that of the HS estimator,
we obtain essentially the same pattern of results as we did when comparing their
sampling variances. In the equation A(σ2

θ)2 + B(σ2
θ) + C, the values of B and C will

again be nonpositive, with A being negative for homogeneous sampling variances
(see section 5.1) and A taking on positive values as the sampling variances become
increasingly heterogeneous.

To summarize, we can conclude that; (a) for small values of σ2
θ, the HS estima-

tor has lower sampling variance and MSE than the DL estimator, which in turn is
more efficient and has lower MSE than the HE estimator; (b) for homogeneous
sampling variances, the HE and DL estimators have the same sampling variance
and MSE, and are always less efficient and have higher MSE than the HS estima-
tor; (c) for heterogeneous sampling variances and sufficiently large σ2

θ, the HE esti-
mator will be more efficient and have smaller MSE than the HS and DL estimators;
and (d) for heterogeneous sampling variances and sufficiently large σ2

θ, the HS esti-
mator will be more efficient and have smaller MSE than the DL estimator, unless
the heterogeneity is caused by a single very small sampling variance, in which case
the MSE of the DL will be lower than that of the HS estimator.

5.5. Bias Due to Truncation of Negative Variance Estimates

It is possible to obtain negative estimates of σ2
θ by all of the estimators considered

in this article. In fact, for σ2
θ = 0, we should expect to obtain a negative estimate about

half of the time when using an unbiased estimator, while a negatively biased esti-
mator would be expected to result in negative estimates more than half of the time.
Because a negative variance estimate is inadmissible, the common practice is to trun-
cate such values to zero. Such truncation, however, introduces a certain amount of
positive bias into the estimators. This bias will increase with smaller k and larger val-
ues of σ2

�i, because estimates of σ2
θ become more variable under these conditions and,

therefore, cases requiring truncation become more prevalent. On the other hand, as
σ2

θ moves further away from zero, the bias caused by truncation will decrease because
the probability that σ̂2

θ is smaller than zero then shrinks accordingly.
Deriving the exact amount of bias in the estimates of σ2

θ due to truncation is pos-
sible after imposing some restrictive assumptions. For the case σ2

θ = 0, the bias in
σ̂2 (DL)

θ due to truncation of negative estimates is given by

where f (x) is the probability density function of a chi-square random variable with
k − 1 degrees of freedom. The bias in σ̂2 (HS)

θ is equal to
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Two different factors now cause σ̂2 (HS)
θ to be biased. From Equation 7 we know that

σ̂2 (HS)
θ is negatively biased in its unconstrained form. On the other hand, the trun-

cation introduces some positive bias into the estimator. One might hope that these
two sources of bias cancel each other out, but as will be shown momentarily, this
will be the case only in very particular circumstances.

If we assume that the sampling variances are homogeneous across the k studies,
then we can obtain results for all five estimators and for values of σ2

θ > 0. The bias
is then given by

and

Hedges and Vevea (1998) gave an equivalent expression for the bias in σ̂2 (DL)
θ . 

Values of the bias in these estimators can be obtained by numerical integration.
Figure 1 illustrates the extent of the bias in the estimators under the assumption

of homogeneous sampling variances (σ2
� = 1) for various values of k and σ2

θ. We
note that the HE, DL, and REML estimators are always positively biased when
truncated. The HS and ML estimators are also positively biased when σ2

θ = 0, but
to a lesser extent because the inherent negative bias of these estimators counteracts
some of the positive bias caused by truncation. For larger values of σ2

θ (when trun-
cation becomes less prevalent), the negative bias in σ̂2(HS/ML)

θ takes over and nega-
tively biases these estimators. There are only a few cases where the two types of
biases cancel each other out. For example, for k = 10, the positive and negative bias
cancel each other out when σ2

θ ≈ .302 and for k = 20, this occurs when σ2
θ ≈ .275.

Moreover, Figure 1 demonstrates that as long as σ2
θ is not too large, the absolute

bias is lower for ̂σ2(HS/ML)
θ than for  ̂σ2

θ . Finally, as k → ∞, the bias decreases
for all estimators toward zero.

Whether the positive bias caused by truncation is important or not depends on
how an estimator of σ2

θ will be used. When σ̂2
θ is simply an indicator of the exis-

tence and extent of population heterogeneity, then truncation bias is irrelevant
because truncation would not change the conclusions. However, truncated and,
therefore, positively biased estimates will introduce bias into Var[

—
ES] that will usu-

ally lead researchers to understate the accuracy of their estimate of µθ (at least,
when the estimator of σ̂2

θ without truncation is unbiased).

6. Monte Carlo Simulations

The analytic comparisons between the estimators were supplemented with
Monte Carlo simulations because of several reasons. First of all, it was necessary
to assume normally distributed effect size measures to derive the sampling vari-
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ances of the σ2
θ estimators. However, the normality assumption only holds asymp-

totically for many commonly used effect sizes. Moreover, the assumption of
known σ2

�i values will be violated in practice, as the sampling variances usually
must be estimated from the data. Also, not all effect size measures provide un-
biased estimates and for some, σ2

�i is known to depend on θi, thereby introducing
some dependency between �i and τi. In addition, some of the results were obtained
under the assumption of homogeneous sampling variances, which might not hold
in practice. Finally, without some actual numerical results, it remains unclear to
what extent estimates of σ2

θ,
—
ES, and Var[

—
ES] are influenced by the various meth-

ods for estimating σ2
θ under realistic conditions.

Simulations were conducted with two different effect size measures: the unstan-
dardized and the standardized mean difference. The parameters k, µθ, σ2

θ, and σ2
�i

were manipulated systematically to determine how they affect estimates of σ2
θ. The

factors were completely crossed and for each condition, 100,000 meta-analyses
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FIGURE 1. Bias in the Hunter–Schmidt/maximum likelihood (HS/ML) and DerSimonian–
Laird/Hedges/restricted maximum likelihood (DL/HE/REML) estimators of σ2

θ when trun-
cating negative estimates (homogeneous sampling variances assumed).
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were simulated. On each iteration, k values of θi were first generated from N(µθ,
σ2

θ). Then k values of ESi and σ̂2
�i were generated from the appropriate distributions.

Estimates of σ2
θ were obtained with each of the five methods discussed.

Estimates of σ2
θ were not truncated for calculating the bias, efficiency, and MSE.

Trials where the ML or REML estimators did not converge were skipped and
replaced by an additional trial to ensure that exactly 100,000 iterations were run
for each condition. Overall, this occurred in less than 0.04% of the trials and, there-
fore, should not have a substantial impact on the results. After constraining the σ̂2

θ

values to be non-negative,
—
ES and Var[

—
ES] were calculated with each of the five

variance estimators using Equations 2 and 4. The usual large-sample test of H0: 
µθ = 0 is given by z = —

ES/SE/[
—
ES], which has an asymptotic standard normal dis-

tribution under the null hypothesis. The value of z was obtained for each method
and tested for significance at α = .05.

6.1. Unstandardized Mean Difference

6.1.1. Methods

Studying the unstandardized mean difference (UMD) has several advantages:
its distribution is exactly normal, it can be estimated unbiasedly, and its sampling
variance is independent of the population effect size. Therefore, the UMD allows
us to investigate the various estimators of the population heterogeneity under what
might be considered ideal conditions.

Let XC
ij and XE

ij be the jth observations from a control and an experimental group
in the ith study. Assume that XC

ij ∼ N(µC
i , σ2

i ) and XE
ij ∼ N(µE

i , σ2
i ). For the ith study,

we define the UMD as θi = µE
i − µC

i . Given nC
i and nE

i observations from the control
and experimental group, respectively, we can estimate θi unbiasedly by ESi = X̄E

i −
X̄C

i , which is distributed N(µE
i − µC

i , σ2
i (1/nE

i + 1/nC
i )). The sampling variance σ2

�i of
ESi can be estimated unbiasedly by s2

i (1/nE
i + 1/nC

i ), where s2
i is the typical pooled

within-group variance.
To make the number of simulated conditions more manageable, it was assumed

that ni = nC
i = nE

i and σ2
i was set to 10. Finally, µC

i was set to zero and µE
i was sampled

from N(µθ, σ2
θ) to generate heterogeneous values of θi. The following factors were

manipulated in the simulations: k = (5, 10, 20, 40, 80), µθ = (0, 1, 2, 4), σ2
θ = (0, 0.125,

0.25, 0.5, 1), and n̄i = (20, 40, 80, 160, 320), and consequently, σ2
�i = (1, 0.5, 0.25,

0.125, 0.0625). To simulate heterogeneous sampling variances, the values of ni were
sampled from a normal distribution with mean n̄i and standard deviation n̄i/3.

6.1.2. Results

The estimates of σ2
θ were insensitive to the different values of µθ. The HE esti-

mator was unbiased as expected. On the other hand, the DL and REML estimators
were slightly positively biased for small n̄i, that is when the σ̂2

�i values are larger and
less efficient estimates of the true sampling variances. For n̄i = 20, the bias fluctu-
ated between 0.05 and 0.09 and for n̄i = 40 between 0.01 and 0.02, with no improve-
ment as k increased. The bias in the HS and ML estimators was roughly the same
and quite substantial in some conditions. The bias in these estimators increased with
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larger values of σ2
θ and decreased as k and n̄i increased. Figure 2 illustrates the extent

of the bias in the HS estimator for various values of σ2
θ and k when n̄i = 40.

Not surprisingly, the sampling variability and MSE of the heterogeneity esti-
mators decreased as k and n̄i increased. On the other hand, the sampling variabil-
ity and MSE increased with larger values of σ2

θ. In Figure 3, the MSE of the five
estimators is plotted against σ2

θ for some representative values of k and n̄i, which
reveals these trends. Moreover, we can sort the estimators into three groups accord-
ing to their efficiency and MSE. The first group is comprised of the HS and ML
estimators, which were roughly equally efficient and had the same MSE across all
values of k, n̄i, and σ2

θ. The DL and REML estimators form the second group, as
these two estimators also differed insubstantially in efficiency and MSE. However,
the HS and ML estimators were more efficient and had lower MSE than the DL
and REML estimators, which can be seen in Figure 3. However, it is not readily
apparent from the figure that the relative efficiency and MSE of these estimators
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FIGURE 2. Bias in the Hunter–Schmidt (HS) estimator of σ2
θ when using the unstan-

dardized mean difference (UMD) effect size (n̄i = 40).
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only depended on k, and not on n̄i or σ2
θ. Table 4 shows the relative efficiency and

MSE of these estimators and demonstrates that both approached 1 as k increased.
In fact, a comparison with Table 3 reveals that the analytic results from section
5.1 closely match the empirical findings. Finally, the third group consists of the
HE estimator, which fell below the DL and REML estimators in efficiency and
MSE (except when σ2

θ = 1 and n̄i ≥ 160). The relative efficiency of these estima-
tors depended on the values of k, n̄i, and σ2

θ and is illustrated for the DL and HE
estimators in Figure 4 for k = 20. The relative MSE was essentially identical to
the relative efficiency.

Estimates of  
—
ES were unbiased in all cases, but the Type I error for the test of H0:

µθ = 0 was only controlled adequately at α = .05 when σ2
θ was close to zero and/or

k was large. For small k, the probability of falsely rejecting H0 became increasingly
inflated for all methods as n̄i and σ2

θ increased. The Type I errors when using the HS
and ML estimators were approximately the same. Similarly, using the HE, DL, and
REML estimators resulted in common Type I error rates and overall provided bet-
ter control of the Type I error, but only marginally so. Table 5 illustrates this for the
HS and HE estimators when σ2

θ = 1 and n̄i ≤ 80. There was little to no change for
values of n̄i greater than 80. Note that the coverage probability of a 95% confidence
interval for µθ would be given by one minus the values in Table 5.

6.2. Standardized Mean Difference

6.2.1. Methods

When XC
ij ∼ N(µC

i , σ2
i ) and XE

ij ∼ N(µE
i , σ2

i ) as for the UMD but the measurement
scales are not commensurable across studies, then the standardized mean differ-
ence (SMD) is usually chosen as an effect size measure. Now, θi = (µE

i − µC
i )/σi,

which can be estimated unbiasedly by ESi = c(mi)(X̄E
i − X̄C

i )/si, where

c m

m

m mi

i

i i

( ) =












−





Γ

Γ

2

2
1

2

1 2
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TABLE 4
Relative Efficiency and MSE of the ML Versus REML Estimators of σ2

θ

Number of Effect Sizes (k)

Parameter Effect Size 5 10 20 40 80

Relative efficiency UMD 0.63 0.81 0.90 0.95 0.97
Relative MSE UMD 0.70 0.84 0.91 0.94 0.96
Relative efficiency SMD 0.63 0.80 0.90 0.95 0.97
Relative MSE SMD 0.73 0.88 0.95 0.99 1.01

Note. UMD = unstandardized mean difference; SMD = standardized mean difference.
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and mi = nE
i + nC

i − 2 (Hedges, 1981). An unbiased estimate of σ2
�i is given by

where ñi = (nE
i nC

i )/(nE
i + nC

i ) (Hedges, 1983). The distribution of ESi is asymptotically
normal and is closely related to a noncentral t-distribution. In fact, c(mi)−1(ñi)1/2ESi

is distributed noncentral t, with mi degrees of freedom and noncentrality parameter
θi(ñi)1/2. The exact sampling variance of ESi is equal to

which is no longer independent of θi, that is, τi.

σ
θ

θ�i

c m m n

m n
i i i i
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θ when using the unstandardized mean difference (UMD) effect size (k = 20).



Again, it was assumed that ni = nC
i = nE

i . The following factors were manipulated
in the simulations: k = (5, 10, 20, 40, 80), µθ = (0, 0.2, 0.5, 0.8) (following Cohen’s
[1988] conventional definitions of small, medium, and large SMDs), σ2

θ = (0, 0.01,
0.025, 0.05, 0.1), and n̄i = (20, 40, 80, 160, 320), and consequently, σ2

�i was between
0.006 and 0.008 for ni = 320 and between 0.101 and 0.110 for ni = 20.

6.2.2. Results

The estimates of σ2
θ were again insensitive to the different values of µθ. This is

somewhat surprising, because the distribution of ESi becomes increasingly skewed
as θi increases. Apparently, within the range of θi values studied, the extent of skew
in the distribution of the ESi values was not substantial enough to introduce any
noticeable dependencies between �i and τi.

The HE estimator was unbiased across all conditions. The DL and REML esti-
mators were slightly negatively biased when n̄i = 20, but the bias never exceeded
−0.01. The HS and ML estimators again revealed a negative bias that decreased
with larger k and n̄i and increased with larger σ2

θ values. In Figure 5, the bias in the
HS estimator is plotted for various values of σ2

θ and k when n̄i = 40.
In Figure 6, the MSE of the five estimators is plotted against σ2

θ for various val-
ues of k and n̄i. Although not quite as equivocal, we can again distinguish three
groups based on efficiency and MSE, the first consisting of the HS and ML esti-
mators, the second of the DL and REML estimators, and the third of the HE esti-
mator (Figure 6b demonstrates this hierarchy most clearly). The relative efficiency
of the HS and ML estimators compared to the DL and REML estimators again
depended only on k. Table 4 shows that the ML estimator was substantially more
efficient than the REML estimator for small to moderate values of k with the rela-
tive efficiency approaching 1 as k increased. The results for the MSE were similar.
Finally, the DL and REML estimators were always more efficient than the HE esti-
mator, often substantially so. Figure 7 illustrates this by showing the relative effi-
ciency of the DL compared to the HE estimator for k = 20.

Estimates of µθ were slightly negatively biased (by −0.01 to −0.02) when µθ was
large and n̄i small. The bias was the same regardless of which estimator of σ2

θ was
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TABLE 5
Type I Error for the Test of H0: µθ = 0 Based on the HS and HE Estimators of σ2

θ Using
the Unstandardized Mean Difference Effect Size (σ2

θ = 1 and α = .05)

Using HS Estimator Using HE Estimator

k n̄i = 20 n̄i = 40 n̄i = 80 n̄i = 20 n̄i = 40 n̄i = 80

5 0.11 0.13 0.15 0.10 0.11 0.12
10 0.09 0.10 0.10 0.08 0.09 0.09
20 0.07 0.07 0.07 0.07 0.07 0.07
40 0.06 0.06 0.06 0.07 0.06 0.06
80 0.06 0.06 0.06 0.06 0.06 0.05



286

Viechtbauer

used to calculate  
—
ES and did not depend on the value of σ2

θ. The Type I error for
the test of H0: µθ = 0 was only controlled adequately at α = .05 when σ2

θ was close
to zero and/or k was large. Again, the Type I error when using the HS and ML esti-
mators and when using the HE, DL, and REML estimators were approximately the
same. The latter three resulted in Type I error rates slightly closer to the nominal
α = .05 value than the HS and ML estimators, as shown in Table 6.

6.3. General Conclusions About the Simulations

For both effect size measures studied, the five variance estimators were not
influenced by the value of µθ. However, the statistical properties of the various esti-
mators depended on the number of effect sizes, the sample sizes, and the amount
of heterogeneity in the population effects.

The DL and REML estimators were slightly biased for small n̄i values with k, the
number of effect sizes, having no influence on the bias. The analytic results, on the
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FIGURE 5. Bias in the Hunter–Schmidt (HS) estimator of σ2
θ when using the standard-

ized mean difference (SMD) effect size (n̄i = 40).
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FIGURE 7. Relative efficiency of the DerSimonian–Laird (DL) versus the Hedges (HE)
estimator of σ2

θ when using the standardized mean difference (SMD) effect size (k = 20).

TABLE 6
Type I Error for the Test of H0: µθ = 0 Based on the HS and HE Estimators of σ2

θ Using
the Standardized Mean Difference Effect Size (σ2

θ = 0.1 and α = .05)

Using HS Estimator Using HE Estimator

k n̄i = 20 n̄i = 40 n̄i = 80 n̄i = 20 n̄i = 40 n̄i = 80

5 0.10 0.13 0.15 0.08 0.10 0.12
10 0.08 0.09 0.10 0.07 0.08 0.08
20 0.07 0.07 0.07 0.06 0.06 0.06
40 0.06 0.06 0.06 0.05 0.06 0.06
80 0.05 0.06 0.06 0.05 0.05 0.05



other hand, indicated that the DL estimator is unbiased when the sampling variances
are exactly known. When n̄i is large, estimates of σ2

�i are more efficient. In fact,
assuming ni = nC

i = nE
i , we can show for the unstandardized mean difference that

and for the standardized mean difference, relying on some asymptotic results,

Clearly, the estimates of the sampling variances quickly become quite accurate,
and, therefore, the assumption of known σ2

�i values may not be that unreasonable
in practice. In fact, for n̄i ≥ 40, the DL and REML estimators were essentially
unbiased.

For the HS and ML estimators, the bias depended on k, n̄i, and σ2
θ as we would

expect based on Equation 7 and could be quite substantial. Only the HE estimator
consistently provided exactly unbiased estimates of σ2

θ regardless of the conditions.
However, the unbiasedness of this estimator came at a price because σ̂2 (HE)

θ was also
the least efficient estimator, with only a few exceptions. The analytic results sug-
gested that for large enough σ2

θ, the HE estimator should surpass the DL and even
the HS estimator in efficiency. Although Figures 4 and 7 support this result, we
also see that σ2

θ was essentially not large enough to make σ̂2 (HE)
θ the more efficient

estimator (except for n̄i = 320 and σ2
θ = 1 in Figure 4). With respect to the other esti-

mators, the analytic results for homogeneous sampling variances given by Equa-
tions 22 and 23 generally held. In other words, within the conditions studied and
ignoring some exceptions, we conclude that, approximately,

and

With respect to the Type I error of the test of H0: µθ = 0, we can make the fol-
lowing observations.

1. Equation 5 shows that the sampling variance of
—
ES is underestimated by

ignoring the variability of  σ̂2
θ (and by considering the σ2

�i values as known). This
finding suggests that Type I errors should be inflated above the nominal α = .05.

2. As discussed in section 5.5, the truncation of negative σ2
θ estimates leads to

a positive bias in the estimators. This bias will make Equation 2 too large on aver-
age and should lead to Type I errors that fall below the nominal α = .05.
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Therefore, the inflation in Type I error rates due to number 1 and the positive bias
in σ2

θ estimates due to number 2 work against each other. For values of σ2
θ close to

0 (where truncation occurs more frequently and the positive bias due to number 2
is stronger), these two effects appear to cancel each other out, as Type I error rates
were essentially nominal. On the other hand, for large σ2

θ values (where trunca-
tion is less prevalent), the effect due to number 2 disappears. Now, as shown in
Tables 5 and 6, the effect of number 1 takes over and leads to inflated Type I error
rates. Finally, we can add two additional conclusions.

3. As discussed earlier, the HS and ML estimators are negatively biased, which
should lead to inflated Type I error rates over and beyond the inflation due to num-
ber 1. This result is apparent in Tables 5 and 6, where we note slightly more infla-
tion in Type I error rates for the HS estimator (Type I error rates for the ML
estimator were essentially identical).

4. As k increases, estimates of σ2
θ become more efficient, which has two effects:

truncation becomes less prevalent (see section 5.5) and at the same time, the infla-
tion due to number 1 decreases. Therefore, for large k, the two counteracting effects
disappear, and we obtain nominal Type I error rates, even when σ2

θ is large (see
again Tables 5 and 6).

7. Conclusion

Having to make general recommendations at this point requires a consideration
of the trade-off between the bias, efficiency, and MSE of the estimators. The analytic
results and simulations indicate that the Hunter–Schmidt and maximum likelihood
estimators generally have lower MSE than the three (approximately) unbiased esti-
mators. The results in section 5.4 suggest, however, that none of the estimators
actually dominates the others in terms of MSE. Even Hedges’ estimator, which
usually has the highest MSE of all the estimators considered, will eventually sur-
pass even the Hunter–Schmidt and maximum likelihood estimators if σ2

θ becomes
large enough (although this seems to be unlikely to happen under realistic condi-
tions). Moreover, as demonstrated in section 5.1, the Hunter–Schmidt and the max-
imum likelihood estimators are dominated by yet another estimator in terms of MSE
when the sampling variances are homogeneous.

When considering bias and efficiency separately, then one should probably
avoid the biased Hunter–Schmidt and maximum likelihood estimators because
they can potentially provide quite misleading results. Their negative bias might
lead researchers to (a) ignore possible heterogeneity in the effect sizes resulting
from either random population effect sizes or moderator effects, and (b) to over-
state the precision of the estimate of µθ. The remaining three estimators are all
approximately unbiased, but the results in section 5.2 indicate some problems
with the DerSimonian–Laird (and Hunter–Schmidt) estimator when the sampling
variances of the effect sizes become small (i.e., when the sample sizes become
large). In particular, it seems that the DerSimonian–Laird and Hunter–Schmidt
estimators cannot reach the Cramer–Rao lower bound of σ2

θ estimators, regard-
less of how large k becomes, unless the sampling variances are homogeneous,
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which is unlikely to occur in practice. The restricted maximum likelihood esti-
mator does not suffer from these problems and generally is substantially more
efficient than Hedges’ estimator. Also, the sampling variance of the restricted
maximum likelihood estimator quickly approaches that of the regular maximum
likelihood estimator, which is known to be asymptotically fully efficient. There-
fore, the restricted maximum likelihood estimator strikes a good balance between
unbiasedness and efficiency and, therefore, could be generally recommended.

However, even more problematic than using a suboptimal estimator for σ2
θ is the

still all-too-common practice of simply presuming that the fixed-effects model,
which assumes that σ2

θ = 0, is appropriate when conducting a meta-analysis. In fact,
it seems rather unlikely that all of the variability in a set of effect sizes could sim-
ply be accounted for by sampling error alone. Moderator variables can introduce
systematic differences into the population effect sizes that can potentially be iden-
tified through appropriate statistical techniques (Hedges, 1994; Overton, 1998;
Raudenbush, 1994). Alternatively, we can imagine a large number of miniscule
moderator effects operating at the population level, where the effect of each mod-
erator variable taken by itself is essentially indiscernible, but as a whole, these dis-
turbances result in population effect sizes that follow an approximate normal
distribution.

Regardless of the mechanism that introduces heterogeneity into the popula-
tion effect sizes, it is important that such variability is properly identified. Claim-
ing that the “true effect size” is equal to some value θ is hardly an accurate or
useful statement when σ2

θ is large. Moreover, the National Research Council
(1992) concluded that “the current practice of assuming a fixed effects model
(. . .) [unless] a significance test of the nonhomogeneity of information sources
rejects the hypothesis of homogeneity, is inefficient and can lead to understate-
ment of uncertainty about the underlying effect of interest” (p. 186). Adopting a
random- or mixed-effects model by default might be the better alternative. This
would help to emphasize that there is potentially much more information to be
gained from a meta-analysis than simply a single overall effect size. However,
these models require estimation of the population heterogeneity. Within the con-
text of the random-effects model, the results of this article should help researchers
make a more informed decision regarding their choice of a population hetero-
geneity estimator.
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