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Meta-analyses are often used to estimate the relative average values of a quan-

titative outcome in two groups (eg, control and experimental groups). How-

ever, they may also examine the relative variability (variance) of those groups.

For such comparisons, two relatively new effect size statistics, the log-

transformed “variability ratio” (the ratio of two standard deviations; lnVR) and

the log-transformed “coefficients of variation ratio” (the ratio of two coeffi-

cients of variation; lnCVR) are useful. In practice, lnCVR may be of most use

because a treatment may affect the mean and the variance simultaneously. We

propose new estimators for lnCVR and lnVR, including for when the two

groups are dependent (eg, cross-over and pre-test-post-test designs). Through

simulation, we evaluated the bias of these estimators and make recommenda-

tions accordingly. We use the methods to demonstrate that: (a) lifestyle inter-

ventions have a heterogenizing effect on gestational weight gain in obese

women and (b) low-glycemic index (GI) diets have a homogenizing effect on

glycemic control in diabetics. We also find that the degree to which depen-

dence among samples is accounted for can impact parameters such as τ2 (ie,

the between-study variance) and I2 (ie, the proportion of the total variability

due to between-study variance), and even the overall effect, and associated

qualitative interpretations. Meta-analytic comparison of the variability between

two groups enables us to ask completely new questions and to gain fresh

insights from existing datasets. We encourage researchers to take advantage of

these convenient new effect size measures for the meta-analysis of variation.
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1 | INTRODUCTION

Meta-analysis is often used to evaluate studies comparing
the average of two groups. These are usually treatment
groups in an experiment/trial, one being a concurrent
control, but may also represent naturally occurring
groups (eg, different sexes). The standardized mean dif-
ference (SMD; also known as Cohen's d and its deriva-
tives), which is the difference between group means
divided by the within-study variability, is a commonly
used effect size measure.1 SMD is popular because it is
“unitless,” meaning it can be used to compare the results
of studies that report outcomes in different units.2 A
similar unitless measure that can also be used to com-
pare two group means is the logarithm of their ratio.
This effect size measure is known as the ratio of means
in medicine3 (despite the fact it is log transformed) and
the log response ratio in ecology and evolution (lnRR4).
Throughout, we follow the lnRR notation as this will
help to draw parallels with other effect size measures
as we progress; the reader should not be confused with
the (logarithm of) risk ratio, which is also sometimes
denoted (ln)RR. Surveys have shown that lnRR is the
most widely used effect size measure in ecology and
evolution.5-7 Moreover, SMD and lnRR collectively
account for over half of all meta-analyses in ecology,6,7

meaning comparisons between group means is the most
widespread aim of meta-analysis in this field. SMD also
seems to be widely used in the medical and social sci-
ences.8 Although it should be noted that for many
applications in these fields, a standardized effect size is
not needed, because data tend to be reported in com-
mon units.

Two groups may not only differ in terms of their
means but also their variances.9,10 Experimental treat-
ments may directly increase or decrease the total amount
of variance in a system due to interindividual variability
in response. In addition, many biological systems also
appear to display a mean-variance relationship11-13; most
commonly, increasing averages are associated with
increasing variances. Perhaps the most well-known
example of a biological mean-variance relationship
comes from ecology and is known as Taylor's law (note
Taylor's law refers to that derived by an ecologist, Taylor,
as opposed to the mathematician that derived Taylor
expansions or Taylor's theorem, which will be used
below). This “law” has been widely observed and states
that as mean population density increases, variance in
population density also increases.14,15 Where mean-
variance relationships are present, a treatment may indi-
rectly cause groups to have differing variances by altering
the mean.

Nakagawa et al16 proposed a number of methods that
allow the user to test for differences in the variance of
groups meta-analytically (for related methods, see Refer-
ences 10 and 17). Among the methods proposed, there
are two effect sizes that readily integrate with standard
contrast-based meta-analytic models.18,19 Those two
effect sizes are: (a) the logarithm of the ratio of the stan-
dard deviations (SDs), named log “variability ratio”
(lnVR) and (b) the logarithm of the ratio of the coeffi-
cients of variation (CV), termed the log “CV ratio”
(lnCVR). Of the two, lnCVR is perhaps the more useful
measure where a mean-variance relationship (eg,
Taylor's law) is likely to exist. Nakagawa et al highlight
that meta-analyzing variation may be applied to
completely novel datasets, but it can also be used to pro-
vide fresh insights into the topics on which a meta-
analysis of means was already conducted.16 Indeed,
lnCVR has already been applied in such diverse fields as
ecology,20 evolution,21 agriculture,22 neuroscience,23,24

health,19 and the social sciences.25 It is important to note
that lnCVR (and also lnVR) require the same data to cal-
culate as is already needed for computing SMD or lnRR
values.

Our aims in this article are threefold. First, we review
existing and propose new estimators for lnVR and lnCVR
and associated sampling error variances. These include
estimators of the sampling variance when the two groups
(treatment and control) are not independent (eg, in
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• Meta-analyses typically focus on the difference
between the average of two groups.

• Recently developed effect sizes now allow the
user to focus on differences in the variability.

• We review existing, then suggest and test new
effect sizes for meta-analysis of variability.

• We make recommendations and demonstrate
the application of these new methods to
worked examples from health sciences.

• Our proposed effect sizes will allow the meta-
analyst to assess the difference between the
variability within two groups with mini-
mal bias.

• These new methods readily integrate with
standard meta-analytic models and require no
additional data than that typically required for
meta-analysis of the average.
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cross-over trials or in paired, single-subject, or pre-test-
post-test designs). Second, we conduct a simulation study
to investigate the performance of these novel estimators.
Finally, we present two case studies using these tech-
niques and illustrate the importance of accounting for
dependence between the two treatment groups in the
estimation of sampling variation and other heterogeneity
parameters (eg, τ2, the between-study variance, and I226).

2 | METHODS

2.1 | Point estimators when groups are
independent

Let xT � N(μT, σT) and xC � N(μC, σC) denote normally
distributed random variables with true means (ie,
expected values) given by μT and μC and true SDs σT and
σC. For independent random samples based on these var-
iables (eg, representing some outcome of interest mea-
sured in a treatment and control group) of size nT and
nC, let �xT and �xC denote the respective sample means and
sT and sC the corresponding SDs for the two groups. Then
comparisons among the means, variances, and CV for
two groups can be made using the lnRR, lnVR, and
lnCVR effect size measures, respectively. “Naïve” estima-
tors of these effect statistics are:

lnRRIND1 = ln
�xT
�xC

� �
, ð1Þ

lnVRIND1 = ln
sT
sC

� �
, ð2Þ

lnCVRIND1 = ln
CVT

CVC

� �
, ð3Þ

where ln denotes the natural logarithm and
CVT = sT=�xT and CVC = sC=�xC denote the CV in the treat-
ment and control group, respectively.

Although these naïve estimators are consistent and
asymptotically unbiased, we can add corrections for the
sample size based on a second-order Taylor expansion
(also known as, the second-order delta method) for each
statistic.16,27,28 For the lnRR, Lajeunesse27 demonstrated
such a correction is important to obtain unbiased estima-
tion especially when sample size is small;

lnRRIND2 = ln
�xT
�xC

� �
+
1
2

s2T
nT�x2T

−
s2C

nC�x2C

� �
: ð4Þ

Similarly, for the lnVR, Nakagawa et al16 proposed:

lnVRIND2 = ln
sT
sC

� �
+
1
2

1
nT−1

−
1

nC−1

� �
: ð5Þ

Combining lnRR2 and lnVR2, one obtains:

lnCVRIND2 = ln
CVT

CVC

� �
+
1
2

1
nT−1

−
1

nC−1

� �

+
1
2

s2C
nC�x2C

−
s2T

nT�x2T

� �
: ð6Þ

Nakagawa et al16 originally suggested an estimator of
lnCVR that missed the bias correction pertaining to lnRR

(ie, 1
2

s2C
nC�x2C

− s2T
nT�x2T

� �
Þ . We also note here that it has been

proposed that 1+ 1
4n

� �
CV acts as a “rough” bias correc-

tion for the CV (eg, 29). From this, one could calcu-
late the lnCVR as difference between the logarithm of
the “roughly corrected” CV of each group. However,
this estimator is not recommended here, and it does
not perform well (see Supporting Information S1,
Text S1).

2.2 | Point estimators when groups are
dependent

Due to experimental design, control and treatment
groups are often not independent of one another. A
clear example of this dependency is in the case of a
cross-over design where the same individuals are sub-
jected to both control and experimental treatments at
two different time points. The point estimates given
above will perform the same way regardless of whether
we are dealing with independent or dependent groups.
However, in cross-over studies, nT = nC ≡ n. Therefore,
it is useful to redefine the effect size estimators using a
sample size (n) that is common to both groups. For
cases of dependency, we have the naïve estimators,
lnRRDEP1, lnVRDEP1, and lnCVRDEP1, which are identi-
cal to their independent counterparts [Equations (1)-
(3)]. We can also rewrite the independent estimators
based the second-order Taylor expansion for dependent
cases as:

lnRRDEP2 = ln
�xT
�xC

� �
+
1
2

s2T
n�x2T

−
s2C
n�x2C

� �
, ð7Þ

lnVRDEP2 = ln
sT
sC

� �
+
1
2

1
nT−1

−
1

nC−1

� �
= ln

sT
sC

� �
, ð8Þ
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lnCVRDEP2 = ln
CVT

CVC

� �
+
1
2

s2C
n�x2C

−
s2T
n�x2T

� �
: ð9Þ

It is worth highlighting that nT = nC ≡ n holds unless
dropouts (ie, missing response data from some individ-
uals) are included in a pre-post design. In cases where
dropouts have been included, we recommend that the
sample size in both conditions (n) is assumed to be the
sample size post dropouts (npost). This is because the cor-
relation between pre and post-treatment measurements
can only be calculated based on the n complete samples,
which assumes nT = nC (see the next section).

2.3 | Dispersion estimators when the
two groups are independent

The original estimators of the sampling (error) variance
for lnRR4 and lnVR16 are based on the first-order Taylor
expansion; they are, respectively,

s2IND1 lnRRð Þ= s2C
nC�x2C

+
s2T

nT�x2T
, ð10Þ

s2IND1 lnVRð Þ= 1
2

1
nC−1

+
1

nT−1

� �
, ð11Þ

Based on these, for lnCVR, Nakagawa et al16

proposed:

s2IND1 lnCVRð Þ= s2C
nc�x2C

+
1

2 nc−1ð Þ−2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2C

nc�x2C

1
2 nc−1ð Þ

s

+
s2T

nT�x2T
+

1
2 nT−1ð Þ−2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2T

nT�x2T

1
2 nT−1ð Þ

s
, ð12Þ

where ρ is the correlation between the log mean and log
SD. It was suggested that ρ can be estimated based on the
correlation between the log sample mean and log sample
SD across the studies included in a meta-analysis.16 How-
ever, in doing so, one risks conflating within- and
between-study correlation (ie, the correlation in the
bivariate sampling distribution of the sample mean and
sample SD could be very different to the correlation of
the true means and SDs across studies). In fact, for obser-
vations that come from an underlying population distri-
bution that is symmetric (eg, a normal distribution), the
sample mean and variance are uncorrelated.30 Thus,
where ρ = 0, the equation above simplifies to:

s2IND1 lnCVRð Þ= s2C
nC�x2C

+
1

2 nC−1ð Þ +
s2T

nT�x2T
+

1
2 nT−1ð Þ :

ð13Þ

As a better estimator for the sampling variance of
lnRR, Lajeunesse27 derived and tested the following sam-
pling variance based on the second-order Taylor
expansion:

s2IND2 lnRRð Þ= s2C
nC�x2C

+
s4C

2n2C�x
4
C
+

s2T
nT�x2T

+
s4T

2n2T�x
4
T
: ð14Þ

Similarly, we can derive the following sampling vari-
ance for lnVR based on the second-order Taylor expan-
sion as:

s2IND2 lnVRð Þ= 1
2

1
nC−1

+
1

nC−1ð Þ2 +
1

nT−1
+

1

nT−1ð Þ2
 !

=
1
2

nC
nC−1ð Þ2 +

nTT
nT−1ð Þ2

 !
: ð15Þ

Accordingly, the complete estimator of the sampling
variance for lnCVR, based on s2(lnRRIND2) and
s2(lnVRIND2) is:

s2IND2 lnCVRð Þ= s2C
nC�x2C

+
s4C

2n2C�x
4
C
+

nC

nC−1ð Þ2 +
s2T

nT�x2T

+
s4T

2n2
T�x

4
T
+

nT
nT−1ð Þ2 : ð16Þ

In the Supporting Information, we propose estimators
of the sampling covariance based on the above, which
can be used when multiple treatment groups are contra-
sted with the same control31 (see Supporting Information
S1, Text S2).

2.4 | Dispersion estimators when the
two groups are dependent

In dependent cases, estimates of the sampling variance
need to account for the correlation between measure-
ments from the same replicates on the two occasions (ie,
cross-correlation32). Based on the first-order Taylor
expansion, the sampling variance for dependent lnRR is:

s2DEP1 lnRRð Þ= s2C
nC�x2C

+
s2T

nT�x2T
−2rCT

ffiffiffiffiffiffiffiffiffiffiffi
s2C

nC�x2C

s ffiffiffiffiffiffiffiffiffiffiffiffi
s2T

nT�x2T
,

s
ð17Þ
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where rCT is a cross-condition correlation value estimated
from the two sets of measurements on the same replicate
when they are under the control and treatment condi-
tions.33 As discussed above for dependent studies
nT = nC ≡ n, meaning s2DEP1 lnRRð Þ simplifies to:

s2DEP1 lnRRð Þ= s2C
n�x2C

+
s2T
n�x2T

−rCT
2sCsT
n�xC�xT

: ð18Þ

If based on the second-order Taylor expansion,27 the
estimator of the sampling variance for lnRR is:

s2DEP2 lnRRð Þ= s2C
n�x2C

+
s2T
n�x2T

+
s4C

2n2�x4C
+

s4T
2n2�x4T

−rCT
2sCsT
n�xC�xT

+ r2CT
s2Cs

2
T �x4C + �x4T
� �

2n2�x4C�x
4
T

: ð19Þ

We can also derive the sampling variance for depen-
dent cases of lnVR based on the first-order Taylor expan-
sion as:

s2DEP1 lnVRð Þ= 1
2

1
nC−1ð Þ +

1
nT−1ð Þ

� �

−r2CT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nC−1ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nT−1ð Þ ,
s

ð20Þ

which, where nT = nC ≡ n, simplifies to:

s2DEP1 lnVRð Þ= 1−r2CT
n−1

: ð21Þ

Based on the second-order Taylor expansion, we have
the sampling variance for dependent cases of lnVR as:

s2DEP2 lnVRð Þ= n

n−1ð Þ2 −r2CT
1

n−1
+ r4CT

s8C + s8T
2 n−1ð Þ2s4Cs4T

: ð22Þ

From the sampling variances for lnRR and lnVR, we
have the sampling variance for lnCVR with the first- and
second-order Taylor expansions as:

s2DEP1 lnCVRð Þ= s2C
n�x2C

+
s2T
n�x2T

−rCT
2sCsT
n�xC�xT

+
1

n−1
−r2CT

1
n−1

,

ð23Þ

s2DEP2 lnCVRð Þ= s2C
n�x2C

+
s2T
n�x2T

+
s4C

2n2�x4C
+

s4T
2n2�x4T

−rCT
2sCsT
n�xC�xT

+ r2CT
s2Cs

2
T �x4C + �x4T
� �

2n2�x4C�x
4
T

+
n

n−1ð Þ2 −r2CT
1

n−1
+ r4CT

s8C + s8T
2 n−1ð Þ2s4Cs4T

: ð24Þ

Note that, where r is positive the estimated sample vari-
ance for a dependent estimator will be smaller than its inde-
pendent equivalent, but that as r shrinks to 0, the dependent
case converges on the independent; e.g. assuming nC = nT,
where r > 0, s2DEP1 lnCVRð Þ < s2IND1 lnCVRð Þ , but where
r = 0, s2DEP1 lnCVRð Þ = s2IND1 lnCVRð Þ.

3 | SIMULATION

3.1 | Simulation study design

We simulated a two-group experiment/trial, where each
group is based on nT and nC random samples drawn from
populations under experimental treatment and control
conditions. The treatment and control populations have
means μT and μC and SDs σT and σC, respectively. The ith
sample in the treatment and control groups, yTi and yCj
(i = 1 … max[nC, nT]) was drawn from a bivariate normal
distribution as follows:

yTi
yCi

� �
�N

μT
μC

	 

,

σ2T ρCTσTσC

ρCTσCσT σ2C

" # !
, ð25Þ

where
μT
μC

	 

are the population means of the two groups,

σ2T ρCTσTσC

ρCTσCσT σ2C

" #
is a variance-covariance matrix

specifying the variances of the two groups with ρCT giving
the degree of correlation among the ith samples in the
two groups and all other parameters are as above. Where
ρCT 6¼ 0, the ith data in the two groups are correlated (ie,
dependent or paired samples as in a cross-over design).
We explored nC = 8, 16, and 42, with nC = nT. For the
independent case (ie, ρCT = 0), we also explored nC< nT,
and here we simulated max(nC, nT) values in each group
before randomly deleting data to achieve the desired
sample sizes.

In all simulations, μC = 100 and σC = 20, which
across the parameters tested ensures positive sample
means (required for log transformation). We explored
values of μT ranging between μC × e−0.5 and μC × e0.5 and
values of σT ranging between σC × e−0.5 and σC × e0.5,
meaning the ln(μT/μC) and ln(σT/σC) is between −0.5 and
0.5. All combinations were explored and where ln(μT/
μC) = ln(σT/σC), the coefficient of variation (CV) of the
two groups will be identical. We also explored ρCT = 0
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and ρCT = 0.8. For each set of parameters, we simulated
100 000 experiments, which we found gave smooth visu-
alization of any trends over the parameter space.

Here, we focus on the performance of estimators of
lnCVR, because: (a) the bias adjustments to lnCVR are a
composite of those described for lnRR and lnVR, mean-
ing it simultaneously tests both and (b) the described
adjustments to lnRR have already been tested extensively
and found to perform well.27 Based on the sample means
and SDs of each simulated experiment, we calculated
lnCVRIND1 and lnCVR IND2 for independent cases (ρCT
= 0) and lnCVR DEP1 and lnCVR DEP2 for dependent
cases (ρCT 6¼ 0). We also calculated the sampling variance
estimators s2IND1 lnCVRð Þ and s2IND2 lnCVRð Þ , where ρCT
= 0, and s2DEP1 lnCVRð Þ and s2DEP2 lnCVRð Þ where ρCT 6¼ 0.
We calculated bias in the lth estimator (l = IND1, IND2,
DEP1, and DEP2) as:

bias lnCVRl½ �= 1
K

XK
k=1

lnCVRlk− ln
σT=μT
σC=μC

� �
, ð26Þ

where k is the kth simulated value (k = 1… K;
K = 100 000) of lnCVRl. This bias can be interpreted as
the mean deviation of the lth estimator of lnCVR from
the true population value. We calculated relative bias in
sampling variance estimator l as:

bias s2l lnCVRð Þ� �
=
s2l lnCVRð Þ−θ2

θ2
× 100, ð27Þ

where s2l lnCVRð Þ is the value of the lth sampling variance
based on the simulated population statistics and sample
sizes, and θ is the SD among K simulated effect sizes
quantified using the estimator determined to have mini-
mal bias [as determined by Equation (26)]. This bias can
be interpreted as the percentage by which the sampling
variance estimator deviates from the true value (ie,
100 = the estimator is twice the true value). We calcu-
lated coverage as the proportion of 95% confidence inter-

vals (CIs) that include ln σT=μT
σC=μC

� �
. For the lth sampling

variance s2l lnCVRð Þ, 95% CIs were constructed as:

95%CI= lnCVR� z0:975sl lnCVRð Þ ð28Þ

where lnCVR is the estimated effect size for the simu-
lated sample quantified using the estimator with minimal
bias, sl(lnCVR) an estimate of the SE (the square root of
s2l lnCVRð Þ), and z0.975 is the function of the 0.975th qua-
ntile of a z distribution (~1.96). Simulations and analyses
were performed in R v3.5.134 and used the “mvrnorm”
function in the MASS package.35

3.2 | Simulation results

We begin with the case where the two groups are inde-
pendent (ρCT = 0). Figure 1 shows bias in the estimated
effects as a function of sample size and the log the ratio
of the means and SDs in the two groups. Across the diag-
onal elements of each plot (black-dashed line), the under-
lying CV of the two populations is identical (even if the

means and SDs differ; ln σT=μT
σC=μC

� �
=0). Elements above the

line correspond to the CV of the treatment population

being greater than that of the control group (ln σT=μT
σC=μC

� �
>0), and elements below the line the opposite (ln σT=μT

σC=μC

� �
<0). lnCVRIND1 overestimates positive effects and
slightly underestimates negative effects, with bias being
most profound where the sample size is small.
lnCVRIND2, conversely, displays no systematic bias.
Figure 2 shows the results where the sample size of the
treatment group is ~25% greater than that of the control
group. lnCVRIND1 showed the greatest upward bias, espe-
cially where the sample size was small. On the other
hand, lnCVRIND2 performed with only very minor
upward bias, which all but disappeared for larger sample
sizes. Given that lnCVRIND2 was determined to be the
most accurate estimator of the effect, we proceeded to
explore how lnCVRIND2 performed in conjunction with
different estimators of sampling variance.

The first sampling variance estimator s2IND1 lnCVRð Þ
underestimated the variance among simulated values of
lnCVRIND2, and where the sample size was small, this
underestimate was by around 10% (Figure 3). Biases for
s2IND2 lnCVRð Þ were minimal, although there was some
very slight upward bias for small sample sizes and large
positive effects (Figure 3). The coverage of 95% CIs for
s2IND1 lnCVRð Þ and s2IND2 lnCVRð Þ (paired with lnCVRIND2)
are shown in Figure 4. s2IND1 lnCVRð Þ generated CIs that
were too narrow at smaller sample sizes, whereas again
s2IND2 lnCVRð Þ performed with little bias. At larger sample
sizes, coverage was much closer to the nominal level
(Figure 4), although s2IND2 lnCVRð Þ still performed more
accurately. The same patterns of performance were
observed for the case where nC<nT (Supporting Informa-
tion Figures S1 and S2).

For the case where treatment and control samples
were dependent on one another (ρCT = 0.8), lnCVRDEP2

out-performed lnCVRDEP1, with a pattern identical to
that in Figure 1 (Supporting Information Figure S3).
With regards estimators for dependent sampling vari-
ances, s2DEP1 lnCVRð Þ underestimated the variance where
as s2DEP2 lnCVRð Þ overestimated the variance (Figure 5).
These biases were within a reasonable range for larger
samples, but were severe for small samples.
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s2DEP2 lnCVRð Þ in particular showed extreme upward bias
(reaching 60% overestimate) when the SD of the treat-
ment group differed from that of the control group
(Figure 5). The CIs generated by s2DEP1 lnCVRð Þ had a ten-
dency to be too narrow, whereas those generated by
s2DEP2 lnCVRð Þ were too wide (Figure 6).

4 | WORKED EXAMPLES

We now provide two examples from the health sciences.
All meta-analytic models (random-effects meta-analysis)
were fitted using the “rma” function (with default set-
tings) in metafor.36

4.1 | Example 1. Interventions to control
gestational weight gain

Yeo et al37 assessed the effects of lifestyle interventions
(diet and/or physical exercise) on gestational weight gain

in obese women. The studies were varied somewhat in
the mode of intervention, and the period of pregnancy
covered. Individual participants in control and interven-
tion groups in all study designs were considered indepen-
dent. Using a random-effects model they found that,
based on 20 effect sizes, interventions led to a statistically
significant reduction in mean gestational weight gain by
on average 2.07 kg relative to a concurrent control
group.37 For both control and intervention groups, there
was a positive correlation between the log sample mean
and SD (Figure 7A).

We first reanalyzed the effects of dietary interventions
on mean weight gain on the ratio scale via lnRRIND2 and
sampling variance s2IND2 lnRRð Þ using a random-effects
model. Like Yeo et al,37 we found that intervention
groups had a significantly lower weight gain than control
groups (lnRR = −0.225, LCI = −0.363 to UCI = −0.086);
the median weight gain of intervention groups was
19.25% (1 − exp[−0.225]) lower than controls. We next
aimed to assess how dietary interventions affect among-
participant variability in gestational weight gain.

FIGURE 1 Bias in effect size estimators of lnCVR as a function of the log ratio of population means (x-axis), SDs (y-axis), and sample

size (balanced) for the case of independent treatment and control group data (ρCT = 0). Black dashed line indicates no effect (ie, lnCVR = 0).

lnCVR, log-transformed coefficients of variation ratio [Colour figure can be viewed at wileyonlinelibrary.com]
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Given that there is an apparent association between
the population mean and variance (Figure 7A), it argu-
ably makes most sense to test whether interventions gen-
erate more variation than controls after correcting for
differences in the population means. Put another way, is
there lower variation in the treatment group relative to
control than we would expect given that they have differ-
ent means. Accordingly, we assessed whether diet affects
variation using lnCVRIND2 and sampling variance
s2IND2 lnCVRð Þ. We do note that if we were explicitly inter-
ested in the effects of interventions on variance as a sta-
tistical quantity (perhaps for questions related to
statistical power), lnVRIND2 may be more useful. We
found that overall there was a statistically significant pos-
itive estimate (lnCVR = 0.245, LCI = 0.108 to
UCI = 0.381), whereby interventions increased the CV in
weight gain among participants by 27.76% relative to con-
trols. There was some evidence for moderate heterogene-
ity in the effect of interventions on among-participant
variation (τ2 = 0.04, I2 = 52.63%).

4.2 | Example 2. Low glycemic index diets
and glycemic control in diabetic subjects

Brand-Miller et al38 performed a meta-analysis of studies
designed to test the effects of low-glycemic index
(GI) diets on biomarkers of glycemic control in diabetic
(types 1 and 2) individuals. Individuals were given either
low or high GI diets, after which glycemia was measured
using HbA1c and/or fructosamine levels. These two
markers quantify glycemia over longer vs shorter time
periods, respectively, where lower levels indicate better
glycemic control. The studies differed somewhat in the
overall GI of the diets used and the duration for which
subjects were on the diets. The studies used a mixture of
parallel designs where the individuals in each treatment
group are completely independent and cross-over designs
where each individual was subject to both treatments.
Brand-Miller et al38 acknowledged that for those studies
with a cross-over design, there will be a degree of correla-
tion among the treatment and control condition data.

FIGURE 2 Bias in effect size estimators of lnCVR as a function of the log ratio of population means (x-axis), SDs (y-axis), and sample

size (unbalanced) for the case of independent treatment and control group data (ρCT = 0). Black dashed line indicates no effect (ie,

lnCVR = 0). lnCVR, log-transformed coefficients of variation ratio [Colour figure can be viewed at wileyonlinelibrary.com]
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They tested the sensitivity of their results to any such cor-
relation by repeating the analyses assuming complete
independence (rCT = 0) and also assuming that groups
are correlated (rCT = 0.34; based on one of the studies in
their primary literature). Their analyses of 14 effect sizes
(mean differences, expressed in terms of percent; 11 from
studies with cross-over designs) suggested that measures
of glycemia are decreased by 6.8 percentage points
(improved glycemic control) on low-GI diets irrespective
of their assumptions about correlations among groups.
The authors used a fixed-effect meta-analytic model and
did not present heterogeneity statistics.

We tested whether low-GI diets affect interindividual
variability in glycemic control using lnCVR. Unlike
Example 1 here, there are studies that contain dependent
groups (those with cross-over designs) although the
strength of the dependence is not precisely known. For
independent designs, we calculated effect sizes and sam-
pling variances via lnCVRIND2, and s2IND2 lnCVRð Þ . For
those studies using a cross-over design, we calculated
lnCVRDEP2 and s2DEP1 lnCVRð Þ assuming treatment and

control data are correlated with rCT = 0, 0.3, 0.5, and 0.8.
Where more than one measure of glycemia was pres-
ented from a single study, we primarily use fructosamine
levels (this being the more widely reported measure).

We observed a mean-variance relationship among
both measures of glycemic control within the two treat-
ment groups (Figure 7B). The results of random-effects
meta-analyses fitted to the effect sizes are given in
Table 1. The analyses consistently estimated a negative
overall effect size, suggesting that on low-GI diets the CV
in biomarkers of glycemic control is on average reduced
compared to high-GI diets. However, as the degree of cor-
relation among data from cross-over trials increased,
there was a marginal reduction in the overall effect mag-
nitude and an increase in the associated SE (Table 1); for
rCT = 0.5, the overall effect was not statistically signifi-
cant. With increasing correlation, heterogeneity also
increased (Table 1). Where we assumed complete inde-
pendence (rCT = 0), there was no evidence for heteroge-
neity, but for rCT = 0.8, we detected inter effect size
heterogeneity (Table 1).

FIGURE 3 Relative bias in sampling variance estimators of lnCVR as a function of the log ratio of population means (x-axis), SDs

(y-axis), and sample size (balanced) for the case of independent treatment and control group data (ρCT = 0). Black dashed line indicates no

effect (ie, lnCVR = 0). lnCVR, log-transformed coefficients of variation ratio [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | DISCUSSION AND
CONCLUSIONS

We recommend that meta-analysts estimate lnCVR for
independent study designs using lnCVRIND2 [Equa-
tion (6)], and for dependent study designs, we recom-
mend the use of the lnCVRDEP2 [Equation (9)]. Under
the simulated conditions explored, these estimators
exhibited minimal bias. In contrast, “naïve” estimators
displayed systematic biases, substantially overestimating
large positive effects, especially when sample sizes were
small. Compared with previous estimators,16 this revision

contains an additional term, 1
2

s2C
nC�x2C

− s2T
nT�x2T

� �
, which has

also been shown to reduce bias in mean effects estimated
via lnRR.27

We also recommend that the sampling variance of
lnCVR be estimated for independent and dependent
study designs using s2IND2 lnCVRð Þ [Equation (16)] and
s2DEP1 lnCVRð Þ [Equation (23)], respectively. Our simula-
tions demonstrate that the estimator for independent

designs performs very well and 95% CIs based on a
z distribution give coverage at the nominal level. The esti-
mator for dependent cases slightly underestimates the
actual sampling variance in lnCVR and will generate CIs
(based on z distribution) that are slightly too narrow. This
may well be due to the substitution of rCT for the
unknown true correlation in the equation for the sam-
pling variance without further account of the additional
source of uncertainty this introduces. CIs that are too
narrow may be more troublesome in that they can lead to
inflated type-1 error rates. A more conservative estimator,
s2DEP2 lnCVRð Þ is given in Equation (24) above, although
this approach may substantially overestimate the sam-
pling variance for small samples. Note that these rec-
ommended estimators are now available in the “escalc”
function in the development version of metafor (https://
github.com/wviechtb/metafor) and will eventually be
implemented in the CRAN version.

We used the recommended estimators to evaluate
whether: (a) lifestyle interventions affect interindividual
gestational weight gain in obese participants, and

FIGURE 4 Coverage of 95% CIs based on estimators of the sampling variance of lnCVR as a function of the log ratio of population

means (x-axis), SDs (y-axis), and sample size (balanced) for the case of independent treatment and control group data (ρCT = 0). Black

dashed line indicates no effect (ie, lnCVR = 0). CI, confidence interval; lnCVR, log-transformed coefficients of variation ratio [Colour figure

can be viewed at wileyonlinelibrary.com]
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(b) low-GI diets alter between-individual variation in gly-
cemic control in diabetics. In Example 1, we found that
interventions reduce weight gain during gestation on
average by around 19% but increase the CV in weight
gain by over 27%. This is indicative that most lifestyle
interventions (there was moderate heterogeneity among
studies in the effect) cause heterogenization in gesta-
tional weight gain, whereby there are responders and
non-responders. Clear questions for researchers working
in the field are: (a) are nonresponders identifiable and
(b) do these treatments actually cause excessive weight
gain in a subpopulation (see also Reference 17).

In the second example of low-GI diets and glycemic
control, we found that these diets have a homogenizing
effect (ie, decrease the CV). This result coupled with a
beneficial effect on the mean indicates that low-GI diets
are likely to be beneficial for most individuals in the
populations sampled. However, the analyses were sensi-
tive to assumptions about the degree to which treatment
and control data are correlated. Assuming higher degrees
of correlation resulted in small changes in the overall
effect (and its SE). Although these parameters were

relatively stable, for estimates with CIs close to zero,
changing assumptions about group independence can
affect inference. Increasing the degree of correlation dra-
matically increased the estimated between-effect size het-
erogeneity, which affects conclusions about the
consistency of the reported effects. This trend can be
explained by the fact that as stronger correlations are
assumed the sampling variances associated with the indi-
vidual effect sizes shrink, effects are assumed to be more
precise, and sampling variability becomes less able to
explain the variation among the effects. Our results cor-
roborate the points made by Becker,32 who introduced an
estimator for the sampling variance of SMD for dependent
groups.

To inspire and facilitate broader adoption of the
meta-analysis of variation, we briefly summarize three
more examples of lnVR and/or lnCVR applied to differ-
ent fields. First, applying lnCVR to nearly 200 studies,
Knapp and van der Heijden22 have shown that organic
agriculture has 15% less stability in yield than conven-
tional agriculture. Such instability is certainly a disadvan-
tage of organic agriculture, although these drawbacks

FIGURE 5 Relative bias in sampling variance estimators of lnCVR as a function of the log ratio of population means (x-axis), SDs

(y-axis), and sample size (balanced) for the case of dependent treatment and control group data (ρCT = 0.8). Black dashed line indicates no

effect (ie, lnCVR = 0). lnCVR, log-transformed coefficients of variation ratio [Colour figure can be viewed at wileyonlinelibrary.com]
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must be balanced against the benefits of organic farming
for biodiversity. Second, Brugger et al23 tested, for the
first time, the hypothesis that patients with schizophrenia
exhibit heterogeneity in dopamine function by combining
65 studies with both lnVR and lnCVR. They found that
schizophrenic patients have more variability in the avail-
ability of dopamine receptors and transporters than con-
trol subjects. Finally, O'Dea et al25 have confirmed that
boys' school grades are more variable than those of girls,
by applying lnCVR to data from over 1.6 million students.
However, contrary to conventional expectations, the vari-
ability between girls and boys was similar in the STEM
subjects. Rather, the largest difference in variability was
observed in languages.

Despite the relative simplicity of lnCVR, as is the case
with any exercise in data analysis, the most appropriate
technique to use will depend on the question being asked.
Where the analyst is able to determine with a reasonable
degree of certainty that a mean-variance relationship does
not exist, lnVR may be a more useful measure of between-
group differences. This is because lnCVR risks conflating

effects on the SD with effects on the mean. In other
instances, the user may be more interested in ascertaining
whether a treatment alters the SD irrespective of a mean-
variance relationship (eg, in questions related to power
and study design) and again lnVR would be an appropri-
ate choice. However, where mean-variance relationships
exist, and the analyst is interested in whether the variation
is greater/lower than expected given the mean, lnCVR is
useful. For some matters, it may even be common practice
for the primary literature to describe variation in terms of
CV rather than SD. For instance, in ecology and evolu-
tion, it is common to present CV when comparing vari-
ability among species/traits that exist on different scales
because CV is a relative measure.39 We note that such a
practice is not necessarily required for meta-analysis,
because lnVR is also a relative measure of variation. Nev-
ertheless, where CV is the measure of variability com-
monly reported in the primary literature, the user may
find it intuitive (or even necessary) to use lnCVR.

Like most pairwise effect sizes, those presented here
assume the underlying data follow a normal distribution,

FIGURE 6 Coverage of 95% CIs based on estimators of the sampling variance of lnCVR as a function of the log ratio of population

means (x-axis), SDs (y-axis), and sample size (balanced) for the case of dependent treatment and control group data (ρCT = 0.8). Black

dashed line indicates no effect (ie, lnCVR = 0). CI, confidence interval; lnCVR, log-transformed coefficients of variation ratio [Colour figure

can be viewed at wileyonlinelibrary.com]

564 SENIOR ET AL.

http://wileyonlinelibrary.com


which may not always be the case. For example, often
biological data are log normally distributed.40 If the user
is concerned that the data underlying their effect sizes
are log normally distributed, there are remedial measures
that they can take (see Supporting Information S1, Text
S3). Nakagawa et al16 also present alternative arm-based
models (and discuss bivariate models) for meta-analysis
of variation. The lnCVR metric assumes that changes in
the mean are associated with proportional changes in the
SD. Arm-based (and bivariate) models are an alternative
for meta-analysis, which allow the user to circumvent the
assumption of proportionality. These models also allow
the user to avoid the constraint of positive-only sample
means, which is a requirement for ratio-based effect sizes
such as lnCVR and lnRR. Arm-based models, however,
are not without their critics who argue that these

methods are radical departure from established meta-
analytic thinking (see Reference 18). Like other (contrast-
based) effect size measures that reflect the difference
between two groups (eg, SMD, lnRR, log risk/odds ratio,
or the risk difference), lnCVR readily integrates with our
most widespread analytical paradigms.

Finally, we finish by reiterating the point made by
Nakagawa et al16 and echoed by subsequent papers using
lnCVR in different fields of study.19-25 As we have dis-
cussed and shown, meta-analysis of variation can tackle
entirely new questions and open our eyes to insights that
are hidden within datasets. The data required to gain
these insights already exist because lnCVR is based on
the same summary statistics as SMD and lnRR: means,
SDs, and sample sizes. We suspect over 50 000 datasets of
this sort have already been collected (cf Reference 41). In

FIGURE 7 Association between log sample mean (ln �x) and log sample SD (ln s) for treatment (hollow points) and control (solid

points) groups in different studies. Data are from: A, Yeo et al,37 where the outcome is gestational weight gain in obese women subjected to

lifestyle interventions (treatment) and control conditions (control); and B, Brand-Miller et al,38 where the outcome is a measure of glycemia

in diabetic individuals on low (treatment) vs high (control) glycemic index diets. Note in (B) measures of glycemia are either fructosamine

(black points) or HbA1c (red points) levels, where lower levels indicate better gylcemic control [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Estimates of overall

effect (lnCVR) and heterogeneity from

random-effects meta-analyses of GI

control in diabetics on low- vs high-GI

diets

rCT Estimate SE LCI UCI τ2 I2 Q P (Q)

0 −0.177 0.070 −0.314 −0.039 <0.001 0.006 15.88 .321

0.3 −0.162 0.075 −0.308 −0.015 0.012 15.14 18.92 .168

0.5 −0.151 0.080 −0.307 0.006 0.030 32.73 22.33 .072

0.8 −0.135 0.091 −0.314 0.044 0.085 70.44 42.58 <.001

Note: Negative estimates indicate lower CV on a low-GI diet. Models were refitted from effect sizes assuming

differing strength of correlation (rCT) among repeated measures from the same individuals in cross-over
trials.
Abbreviations: CV, coefficients of variation; GI, glycemic index; LCI, lower 95% confidence interval; lnCVR,
log-transformed coefficients of variation ratio; SE, standard error; UCI, upper 95% confidence interval.
Source: Data from Brand-Miller et al.38
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this regard, it is vital that meta-analytic “raw” data are
made available and reusable in the spirit of open and
transparent science.42,43
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